【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.

(1)當(dāng)時(shí),求的極大值點(diǎn)和極小值點(diǎn);

(2)若上的最大值為1,求的值.

【答案】(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為; (Ⅱ).

【解析】

試題分析:(1)通過(guò)求解函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的極值點(diǎn),求出,然后通過(guò)函數(shù)的單調(diào)性求解極值點(diǎn)即可;(2)令求出,然后討論當(dāng)時(shí),得出的單調(diào)區(qū)間求出的最大值,求出;再討論時(shí),當(dāng),時(shí),分別得出的單調(diào)區(qū)間,求出的最大值即可求出的值.

試題解析:(1)

.

∵函數(shù)處取得極值,

∴當(dāng)時(shí),,則

、的變化情況如下表:

1

0

0

極大值

極小值

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

的極大值點(diǎn)為的極小值點(diǎn)為1.

(2)

得,,

處取得極值

(。┊(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減,

在區(qū)間上的最大值為,則,即

(ⅱ)當(dāng)時(shí),

①當(dāng)時(shí),上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增,

的最大值1可能在處取得,

②當(dāng)時(shí),在區(qū)間上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增

的最大值1可能在處取得,而

,即,與

③當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,

的最大值1可能在處取得,而,矛盾.

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶(hù))的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:

階梯級(jí)別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機(jī)抽取了10戶(hù)家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:

(Ⅰ)現(xiàn)要在這10戶(hù)家庭中任意選取3戶(hù),求取到第二階梯水量的戶(hù)數(shù)X的分布列與數(shù)學(xué)期望;

(Ⅱ)用抽到的10戶(hù)家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶(hù),若抽到戶(hù)月用水量為一階的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面,.

(Ⅰ)求證:平面;

(Ⅱ)求直線(xiàn)與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)平面內(nèi)平行四邊形ABCD(A,B,C,D按逆時(shí)針排列),A點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為2+i,向量對(duì)應(yīng)的復(fù)數(shù)為1+2i,向量對(duì)應(yīng)的復(fù)數(shù)為3-i.

(1)求點(diǎn)C,D對(duì)應(yīng)的復(fù)數(shù).

(2)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

若曲線(xiàn)處的切線(xiàn)在兩坐標(biāo)軸上的截距相等,求的值;

若對(duì),都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)加工生產(chǎn)一批珠寶,要求每件珠寶都按統(tǒng)一規(guī)格加工,每件珠寶的原材料成本為3.5萬(wàn)元,每件珠寶售價(jià)(萬(wàn)元)與加工時(shí)間(單位:天)之間的關(guān)系滿(mǎn)足圖1,珠寶的預(yù)計(jì)銷(xiāo)量(件)與加工時(shí)間(天)之間的關(guān)系滿(mǎn)足圖2.原則上,單件珠寶的加工時(shí)間不能超過(guò)55天,企業(yè)支付的工人報(bào)酬為這批珠寶銷(xiāo)售毛利潤(rùn)的三分之一,其他成本忽略不計(jì)算.

1)如果每件珠寶加工天數(shù)分別為6,12,預(yù)計(jì)銷(xiāo)量分別會(huì)有多少件?

2)設(shè)工廠生產(chǎn)這批珠寶產(chǎn)生的純利潤(rùn)為(萬(wàn)元),請(qǐng)寫(xiě)出純利潤(rùn)(萬(wàn)元)關(guān)于加工時(shí)間(天)之間的函數(shù)關(guān)系式,并求純利潤(rùn)(萬(wàn)元)最大時(shí)的預(yù)計(jì)銷(xiāo)量.

注:毛利潤(rùn)=總銷(xiāo)售額-原材料成本,純利潤(rùn)=毛利潤(rùn)-工人報(bào)酬

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,

(1)設(shè)上的一點(diǎn),證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為 為參數(shù)以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為:,直線(xiàn)的極坐標(biāo)方程為

Ⅰ)寫(xiě)出曲線(xiàn)的極坐標(biāo)方程,并指出它是何種曲線(xiàn);

Ⅱ)設(shè)與曲線(xiàn)交于兩點(diǎn),與曲線(xiàn)交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù),.

1)畫(huà)出的大致圖象,并根據(jù)圖象寫(xiě)出函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),求的取值范圍;

3)是否存在實(shí)數(shù)a,b, 使得函數(shù)上的值域也是?若存在,求出a,b的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案