【題目】電視傳媒公司為了解世界杯期間某地區(qū)電視觀眾對《戰(zhàn)斗吧足球》節(jié)目的收視情況,隨機抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該節(jié)目時間的頻率分布直方圖:

(注:頻率分布直方圖中縱軸表示,例如,收看時間在分鐘的頻率是)

將日均收看該足球節(jié)目時間不低于40分鐘的觀眾稱為“足球迷”.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否可以認(rèn)為“足球迷”與性別有關(guān)?如果有關(guān),有多大把握?

非足球迷

足球迷

合計

10

55

合計

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“足球迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列、均值和方差

附:

【答案】(1);(2).

【解析】

⑴由所給的頻率分布直方圖計算出“足球迷”人數(shù)和“非足球迷”人數(shù),填入列聯(lián)表,計算觀測值,對照臨界值得到答案

⑵由頻率分布直方圖知,抽到“足球迷”的頻率為,將頻率視為概率,即從觀眾中抽取一名“足球迷”的概率為,由于,從而給出分布列,再由公式計算出均值和方差

(1)由所給的頻率分布直方圖知,“足球迷”人數(shù)為100(100.020+100.005)=25,

“非足球迷”人數(shù)為75,從而22列聯(lián)表如下

非足球迷

足球迷

合計

30

15

45

45

10

55

合計

75

25

100

將22列聯(lián)表的數(shù)據(jù)代入公式計算:

,

因為2.706<3.030<3.841,所以有90%的把握認(rèn)為“足球迷”與性別有關(guān).

(2)由頻率分布直方圖知,抽到“足球迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“足球迷”的概率為.由題意,XB,從而X的分布列為

0

1

2

3

P

EXnp=3,DXnp(1-p)=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的角平分線AD的延長線交它的外接圓于點E.

(1)證明:△ABE∽△ADC;
(2)若△ABC的面積S= ADAE,求∠BAC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價為500/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).

1)由圖象,求函數(shù)的表達(dá)式;

2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價﹣成本總價)為元.試用銷售單價表示毛利潤,并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,則滿足的取值范圍是()

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是()

若直線與直線平行,則直線平行于經(jīng)過直線的所有平面;平行于同一個平面的兩條直線互相平行;是兩條直線,是兩個平面,且,,則是異面直線;④若直線恒過定點(1,0),則直線方程可設(shè)為.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為調(diào)查高中生選修課的選修傾向與性別關(guān)系,隨機抽取50名學(xué)生,得到如表的數(shù)據(jù)表:

傾向“平面幾何選講”

傾向“坐標(biāo)系與參數(shù)方程”

傾向“不等式選講”

合計

男生

16

4

6

26

女生

4

8

12

24

合計

20

12

18

50


(1)根據(jù)表中提供的數(shù)據(jù),選擇可直觀判斷“選課傾向與性別有關(guān)系”的兩種,作為選課傾向的變量的取值,并分析哪兩種選擇傾向與性別有關(guān)系的把握大;
附:K2=

P(k2≤k0

0.100

0.050

0.010

0.005

0.001

k0

2.706

3.841

6.635

7.879

10.828


(2)在抽取的50名學(xué)生中,按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標(biāo)系與參數(shù)方程”的學(xué)生中抽取8人進(jìn)行問卷.若從這8人中任選3人,記傾向“平面幾何選講”的人數(shù)減去與傾向“坐標(biāo)系與參數(shù)方程”的人數(shù)的差為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

(1)求證:AB1⊥平面A1BD;

(2)求銳二面角A-A1D-B的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x)滿足f(x+2)f(x)=1對于x∈R恒成立,且f(x)>0,則f(2015)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)a0,a≠1).

1)判斷并證明函數(shù)fx)的奇偶性;

2)若ft2t1+ft2)<0,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案