【題目】已知函數(shù),則下述結(jié)論中錯(cuò)誤的是(

A.有且僅有個(gè)零點(diǎn),則有且僅有個(gè)極小值點(diǎn)

B.有且僅有個(gè)零點(diǎn),則上單調(diào)遞增

C.有且僅有個(gè)零點(diǎn),則的范圍是

D.圖像關(guān)于對(duì)稱(chēng),且在單調(diào),則的最大值為

【答案】B

【解析】

利用正弦函數(shù)的圖象和性質(zhì)對(duì)每一個(gè)選項(xiàng)逐一分析判斷得解.

因?yàn)?/span>,因?yàn)?/span>有且僅有個(gè)零點(diǎn),所以,所以.所以選項(xiàng)C正確;

此時(shí),有且僅有個(gè)極小值點(diǎn),故選項(xiàng)A正確;

因?yàn)?/span>

因?yàn)?/span>,所以當(dāng)時(shí),所以,此時(shí)函數(shù)不是單調(diào)函數(shù),所以選項(xiàng)B錯(cuò)誤;

因?yàn)?/span>圖像關(guān)于對(duì)稱(chēng),所以.

如果函數(shù)在單調(diào)遞增,

,所以,

時(shí),函數(shù)的增區(qū)間為,

所以此時(shí)不滿(mǎn)足題意,所以該情況不存在.

單調(diào)遞減,

,且,

,且,,

由上面兩式可得,,故奇數(shù)的最大值為11

當(dāng)時(shí),,,

此時(shí),上不單調(diào),不滿(mǎn)足題意.

當(dāng)時(shí),,,

此時(shí),上單調(diào)遞減,滿(mǎn)足題意;

的最大值為9故選項(xiàng)D正確.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中a為非零常數(shù).

討論的極值點(diǎn)個(gè)數(shù),并說(shuō)明理由;

證明:在區(qū)間內(nèi)有且僅有1個(gè)零點(diǎn);設(shè)的極值點(diǎn),的零點(diǎn)且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說(shuō)明:數(shù)學(xué)滿(mǎn)分150分,物理滿(mǎn)分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;

2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);

3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從此6人中隨機(jī)抽取3人,記X為抽到兩個(gè)“優(yōu)”的學(xué)生人數(shù),求X的分布列和期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求在點(diǎn)處的切線(xiàn)方程;

2)若方程有兩個(gè)實(shí)數(shù)根,,且,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為,

(l)設(shè)為參數(shù),若,求直線(xiàn)的參數(shù)方程;

2)已知直線(xiàn)與曲線(xiàn)交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂(lè)、射、御、書(shū)、數(shù),簡(jiǎn)稱(chēng)“六藝”,某高中學(xué)校為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂(lè)、射、御、書(shū)、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐,規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為;選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場(chǎng)比賽中獲得第一名,下列說(shuō)法正確的是( )

A. 乙有四場(chǎng)比賽獲得第三名

B. 每場(chǎng)比賽第一名得分

C. 甲可能有一場(chǎng)比賽獲得第二名

D. 丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由中央電視臺(tái)綜合頻道和唯眾傳媒聯(lián)合制作的開(kāi)講啦是中國(guó)首檔青年電視公開(kāi)課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國(guó)青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問(wèn)題,同時(shí)也在討論青春中國(guó)的社會(huì)問(wèn)題,受到青年觀(guān)眾的喜愛(ài),為了了解觀(guān)眾對(duì)節(jié)目的喜愛(ài)程度,電視臺(tái)隨機(jī)調(diào)查了AB兩個(gè)地區(qū)的100名觀(guān)眾,得到如表的列聯(lián)表,已知在被調(diào)查的100名觀(guān)眾中隨機(jī)抽取1名,該觀(guān)眾是B地區(qū)當(dāng)中非常滿(mǎn)意的觀(guān)眾的概率為

非常滿(mǎn)意

滿(mǎn)意

合計(jì)

A

30

15

B

合計(jì)

完成上述表格并根據(jù)表格判斷是否有的把握認(rèn)為觀(guān)眾的滿(mǎn)意程度與所在地區(qū)有關(guān)系;

若以抽樣調(diào)查的頻率為概率,從A地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀(guān)眾非常滿(mǎn)意的人數(shù)為X,求X的分布列和期望.

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),都有成立,求的取值范圍;

(Ⅲ)試問(wèn)過(guò)點(diǎn)可作多少條直線(xiàn)與曲線(xiàn)相切?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即1224,48,,192,,逐個(gè)算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時(shí)候的近似值是3.141024,劉徽稱(chēng)這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來(lái)逼近未知的、要求的,用有限來(lái)逼近無(wú)窮,這種思想極其重要,對(duì)后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來(lái)估算圓周率,則的近似值是( )(精確到.(參考數(shù)據(jù)

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

同步練習(xí)冊(cè)答案