雙曲線
,過其一個焦點且垂直于實軸的直線與雙曲線交于
、
兩點,O是坐標原點,滿足
,則雙曲線的離心率為
試題分析:由題意易知
,所以
,因為
,所以
,即
,所以e=
.
點評:求圓錐曲線的離心率是常見題型,常用方法:①直接利用公式
;②利用變形公式:
(橢圓)和
(雙曲線)③根據(jù)條件列出關于a、b、c的關系式,兩邊同除以a,利用方程的思想,解出
。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(滿分12分)已知點
,直線
:
交
軸于點
,點
是
上的動點,過點
垂直于
的直線與線段
的垂直平分線交于點
.
(Ⅰ)求點
的軌跡
的方程;(Ⅱ)若 A、B為軌跡
上的兩個動點,且
證明直線AB必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題12分)直線l:y=kx+1與雙曲線C:
的右支交于不同的兩點A,B
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知當橢圓的長軸、短軸、焦距依次成等比時稱橢圓為“黃金橢圓”,請用類比的性質定義“黃金雙曲線”,并求“黃金雙曲線”的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點
為拋物線
上一點,記點
到
軸距離
,點
到直線
的距離
,則
的最小值為____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
已知橢圓的中心在坐標原點
,長軸長為
,離心率
,過右焦點
的直線
交
橢圓于
,
兩點:
(Ⅰ)求橢圓的方程;(Ⅱ)當直線
的斜率為1時,求
的面積;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓
過橢圓
的兩焦點,與橢圓有且僅有兩個
與圓
相切 ,與橢圓
相交于
兩點記
(1)求橢圓的方程
(2)求
的取值范圍;
(3)求
的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
上的任意一點到它的兩個焦點
,
的距離之和為
,且其焦距為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知直線
與橢圓
交于不同的兩點A,B.問是否存在以A,B為直徑
的圓 過橢圓的右焦點
.若存在,求出
的值;不存在,說明理由.
查看答案和解析>>