【題目】甲,乙兩人進行圍棋比賽,共比賽2n(n∈N+)局,根據(jù)以往比賽勝負的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局數(shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結論.

【答案】
(1)解:若甲、乙比賽4局甲獲勝,則甲在4局比賽中至少勝3局,

所以

同理


(2)解:在2n局比賽中甲獲勝,則甲勝的局數(shù)至少為n+1局,

= ,

所以

又因為 ,

所以 ,所以P(n)<P(n+1)


【解析】(1)若甲、乙比賽4局甲獲勝,則甲在4局比賽中至少勝3局,由此能求出P(2),同理能求出P(3)的值.(2)在2n局比賽中甲獲勝,則甲勝的局數(shù)至少為n+1局,從而 ,由此能求出P(n)<P(n+1).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側有A,B兩個蔬菜基地,江的另一側點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元.

(1)設∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問中轉站D建在何處時,運輸總費用S最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=xex﹣asinxcosx(a∈R,其中e是自然對數(shù)的底數(shù)).
(1)當a=0時,求f(x)的極值;
(2)若對于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)在區(qū)間 上有兩個零點?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,

,

(1)求數(shù)列的通項公式.

(2)設數(shù)列滿足,

①求數(shù)列的通項公式;

②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為 .若直線l與曲線C交于A,B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB=2,CD=4,BC= ,點E,F(xiàn)分別為AD,BC的中點.如果對于常數(shù)λ,在ABCD的四條邊上,有且只有8個不同的點P使得 =λ成立,那么實數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在圓上任取一點,過點軸的垂線段,為垂足.,當點在圓上運動時,

(1)求點的軌跡的方程;

(2) 若,直線交曲線、兩點(點、與點不重合),且滿足.為坐標原點,點滿足,證明直線過定點,并求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),函數(shù) ,若對所有的總存在,使得成立,則實數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)當a=2時,求函數(shù)f(x)的最值;
(2)當a≠0時,過原點分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a<

查看答案和解析>>

同步練習冊答案