【題目】已知雙曲線的離心率為,過(guò)其右焦點(diǎn)作斜率為的直線,交雙曲線的兩條漸近線于兩點(diǎn)(點(diǎn)在軸上方),則( )
A.B.C.D.
【答案】B
【解析】
由雙曲線的離心率可得a=b,求得雙曲線的漸近線方程,設(shè)右焦點(diǎn)為(c,0),過(guò)其右焦點(diǎn)F作斜率為2的直線方程為y=2(x﹣c),聯(lián)立漸近線方程,求得B,C的坐標(biāo),再由向量共線定理,可得所求比值.
由雙曲線的離心率為,可得ca,
即有a=b,雙曲線的漸近線方程為y=±x,
設(shè)右焦點(diǎn)為(c,0),過(guò)其右焦點(diǎn)F作斜率為2的直線方程為y=2(x﹣c),
由y=x和y=2(x﹣c),可得B(2c,2c),
由y=﹣x和y=2(x﹣c)可得C(,),
設(shè)λ,即有0﹣2c=λ(0),
解得λ=3,即則3.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一定點(diǎn),及一定直線:,以動(dòng)點(diǎn)為圓心的圓過(guò)點(diǎn),且與直線相切.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)在直線上,直線,分別與曲線相切于,,為線段的中點(diǎn).求證:,且直線恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,,設(shè)函數(shù).
(1)若函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),且時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù),,滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】表示一位騎自行車(chē)和一位騎摩托車(chē)的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個(gè)旅行者的如下信息:
①騎自行車(chē)者比騎摩托車(chē)者早出發(fā)3 h,晚到1 h;
②騎自行車(chē)者是變速運(yùn)動(dòng),騎摩托車(chē)者是勻速運(yùn)動(dòng);
③騎摩托車(chē)者在出發(fā)1.5 h后追上了騎自行車(chē)者;
④騎摩托車(chē)者在出發(fā)1.5 h后與騎自行車(chē)者速度一樣.
其中,正確信息的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為 (直接寫(xiě)出結(jié)果即可);
(2)根據(jù)表格中的數(shù)據(jù)作出一個(gè)周期的圖象;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)為橢圓上一點(diǎn).
(1)求橢圓C的方程;
(2)已知兩條互相垂直的直線,經(jīng)過(guò)橢圓的右焦點(diǎn),與橢圓交于四點(diǎn),求四邊形面積的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù),,滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在地面上同一地點(diǎn)觀測(cè)遠(yuǎn)方勻速垂直上升的熱氣球,在上午10點(diǎn)整熱氣球的仰角是,到上午10點(diǎn)20分的仰角變成.請(qǐng)利用下表判斷到上午11點(diǎn)整時(shí),熱氣球的仰角最接近哪個(gè)度數(shù)( )
0.5 | 0.559 | 0.629 | 0.643 | 0.656 | 0.669 | 0.682 | 0.695 | 0.707 | |
0.866 | 0.829 | 0.777 | 0.766 | 0.755 | 0.743 | 0.731 | 0.719 | 0.707 | |
0.577 | 0.675 | 0.810 | 0.839 | 0.869 | 0.900 | 0.933 | 0.966 | 1.0 |
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com