若存在x∈[-2,3],使不等式4x-x2≥a成立,則實(shí)數(shù)a的取值范圍是(  )
A、[-8,+∞)
B、[3,+∞)
C、(-∞,-12]
D、(-∞,4]
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件利用二次函數(shù)的性質(zhì)求得函數(shù)f(x)=4x-x2在∈[-2,3]上的最大值,可得a的范圍.
解答: 解:當(dāng)x∈[-2,3]時(shí),函數(shù)f(x)=4x-x2=-(x-2)2+4,
∵當(dāng)x=2時(shí),f(x)取得最大值為4.
∴[-2,3],最大值為4,
由于存在x∈[-2,3],使不等式2x-x2≥a成立,
∴a≤4,
故選:D.
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在體積為
1
6
a3
的三棱錐P-ABC中,PA⊥平面ABC,∠ACB=90°且AC=BC=a,求異面直線PB與AC所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3x+log
1
2
(-x)的零點(diǎn)所在區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,M是棱DD1的中點(diǎn),點(diǎn)O為底面ABCD的中心,P為棱A1B1上任一點(diǎn),則異面直線OP與AM所成的角的大小為(  )
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-ln(x+a)(a>0)的最小值為0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若對(duì)任意x∈[0,+∞)不等式f(x)≤x-
mx
x+1
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱準(zhǔn)P-ABCD中,底面ABCD是正方形,點(diǎn)E為PC中點(diǎn),證明:PA∥平面EDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x+y+z=10的正整數(shù)解的個(gè)數(shù)( 。
A、
C
2
9
B、
C
2
10
C、
C
3
10
D、
C
3
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(1,1),向量
n
與向量
m
的夾角
4
,且
m
n
=-1.
(1)求向量
n
;
(2)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2co2s
C
2
),其中ABC為△ABC的內(nèi)角,且∠C-∠B=∠B-∠A.求|
n
+
p
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=2∠B,且a,b為∠A,∠B所對(duì)邊為已知,則
sin3B
sinB
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案