17.拋物線y2=8x的動弦AB的長為16,求弦AB的中點M到y(tǒng)軸的最短距離.

分析 準線l:x=-2,分別過A,B,M作AC⊥l,BD⊥l,MH⊥l,垂足分別為C,D,H,要求M到y(tǒng)軸的最小距離,只要先由拋物線的定義求M到拋物線的準線的最小距離d,然后用d-2即可求解

解答 解:由題意可得拋物線的準線l:x=-2,

分別過A,B,M作AC⊥l,BD⊥l,MH⊥l,垂足分別為C,D,H
在直角梯形ABDC中MH=$\frac{AC+BD}{2}$,
由拋物線的定義可知AC=AF,BD=BF(F為拋物線的焦點)
MH=$\frac{AF+BF}{2}$≥$\frac{AB}{2}$=8,
即AB的中點M到拋物線的準線的最小距離為8,
∴線段AB的中點M到y(tǒng)軸的最短距離為8-2=6

點評 本題考查拋物線的定義、標準方程,以及簡單性質(zhì)的應用,熟練掌握拋物線的性質(zhì),是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.下列說法正確的是( 。
A.若直線l平行于平面α內(nèi)的無數(shù)條直線,則l∥α
B.若直線a在平面α外,則a∥α
C.若直線a∥b,b?α,則a∥α
D.若直線a∥b,b?α,則直線a平行于平面α內(nèi)的無數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知雙曲線3x2-y2=3,過P(2,1)點作一直線交雙曲線于A、B兩點,若P為AB的中點.
(1)求直線AB的方程;
(2)求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知|$\overrightarrow{a}$|=10,|$\overrightarrow$|=12,且$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,求(3$\overrightarrow{a}$)•($\frac{1}{5}$$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{8}$=1,過點M(1,1)的直線與橢圓相交于A、B兩點,若M為弦AB的中點,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知sin(α+β)=1,試問:tan(2α+β)+tanβ的值是否是定值?若是,求出定值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在x=1時取得極值,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對?x1,x2∈(0,+∞),且x1≠x2,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>-2$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知拋物線y2=4x,點P是拋物線上一動點,點M(4,2)是平面上的一定點,則|PM|+|PF|的最小值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn,且Sn=2n+1-2,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù){an}滿足bn=$\frac{{S}_{n}}{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案