已知橢圓過(guò)點(diǎn),上、下焦點(diǎn)分別為、,

向量.直線與橢圓交于兩點(diǎn),線段中點(diǎn)為

(1)求橢圓的方程;

(2)求直線的方程;

(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線

與區(qū)域有公共點(diǎn),試求的最小值.

 

【答案】

(1)(2)(3)

【解析】

試題分析:[解](1)

解得:,橢圓方程為

(2)①當(dāng)斜率不存在時(shí),由于點(diǎn)不是線段的中點(diǎn),所以不符合要求;

②設(shè)直線方程為,代入橢圓方程整理得

 

解得

所以直線

(3)化簡(jiǎn)曲線方程得:,是以為圓心,為半徑的圓。當(dāng)圓與直線相切時(shí),,此時(shí)為,圓心。

由于直線與橢圓交于,

故當(dāng)圓過(guò)時(shí),最小。此時(shí),

考點(diǎn):橢圓的方程

點(diǎn)評(píng):關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來(lái),當(dāng)涉及到交點(diǎn)時(shí),常用到根與系數(shù)的關(guān)系式:)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C過(guò)點(diǎn)M(1,
6
2
),F(xiàn)(-
2
,0)
是橢圓的左焦點(diǎn),P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且|PF|、|MF|、|QF|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:線段PQ的垂直平分線經(jīng)過(guò)一個(gè)定點(diǎn)A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省高三4月第四次周考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓()過(guò)點(diǎn),其左、右焦點(diǎn)分別為,且.

(1)求橢圓的方程;

(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市崇明縣高三第一學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本題18分,第(1)小題4分;第(2)小題6分;第(3)小題8分)

如圖,已知橢圓過(guò)點(diǎn),上、下焦點(diǎn)分別為、,

向量.直線與橢圓交于兩點(diǎn),線段中點(diǎn)為

(1)求橢圓的方程;

(2)求直線的方程;

(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線

與區(qū)域有公共點(diǎn),試求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市盧灣區(qū)高考模擬考試數(shù)學(xué)試卷(理科) 題型:解答題

已知橢圓()過(guò)點(diǎn),其左、右焦點(diǎn)分別為,且

(1)求橢圓的方程;

(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案