【題目】已知函數(shù)f(x)=(log2x﹣2)(log4x﹣
(1)當x∈[2,4]時,求該函數(shù)的值域;
(2)若f(x)>mlog2x對于x∈[4,16]恒成立,求m的取值范圍.

【答案】
(1)解:f(x)=(log2x﹣2)(log4x﹣

= (log2x)2 log2x+1,2≤x≤4

令t=log2x,則y= t2 t+1= (t﹣ )2﹣

∵2≤x≤4,

∴1≤t≤2.

當t= 時,ymin=﹣ ,當t=1,或t=2時,ymax=0.

∴函數(shù)的值域是[﹣ ,0]


(2)解:令t=log2x,得 t2 t+1>mt對于2≤t≤4恒成立.

∴m< t+ 對于t∈[2,4]恒成立,

設(shè)g(t)= t+ ,t∈[2,4],

∴g(t)= t+ = (t+ )﹣

∵g(t)= t+ 在[2,4]上為增函數(shù),

∴當t=2時,g(t)min=g(2)=0,

∴m<0.


【解析】(1)f(x)=(log2x﹣2)(log4x﹣ )= (log2x)2﹣ log2x+1,2≤x≤4,令t=log2x,則y= t2﹣ t+1= (t﹣ 2 ,由此能求出函數(shù)的值域.(2)令t=log2x,得 t2 t+1>mt對于2≤t≤4恒成立,從而得到m< t+ 對于t∈[2,4]恒成立,構(gòu)造函數(shù)g(t)= t+ ,t∈[2,4],能求出m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線方程為

(Ⅰ)求實數(shù)的值;

(Ⅱ)求函數(shù)在區(qū)間上的最大值;

(Ⅲ)曲線上存在兩點,使得是以坐標原點為直角頂點的直角三角形,且斜邊的中點在軸上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率 ,左右焦點分別為 是橢圓在第一象限上的一個動點,圓 的延長線, 的延長線以及線段 都相切, 為一個切點.

(1)求橢圓方程;

(2)設(shè) ,過 且不垂直于坐標軸的動點直線 交橢圓于 兩點,若以 為鄰邊的平行四邊形是菱形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,圓的參數(shù)方程為為參數(shù)),(1)直線且與圓相切,求直線的極坐標方程;(2)過點且斜率為的直線與圓交于, 兩點,若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2+ax﹣6a2≤0},B={x||x﹣2|<a},
(1)當a=1時,求A∩B和A∪B;
(2)當BA時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當a=﹣ 時,方程f(1﹣x)= 有實根,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx.
(1)當a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)當a=﹣2時,求函數(shù)f(x)的極值;
(3)若函數(shù)g(x)=f(x)+ 在[1,4]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】右面莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損.則甲的平均成績超過乙的平均成績的概率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:參數(shù)方程與極坐標系

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標原點O為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為

1)求曲線的直角坐標方程,并 C的焦點F的直角坐標;

2)已知點,若直線C相交于A,B兩點,且,求的面積.

查看答案和解析>>

同步練習(xí)冊答案