【題目】選修4-4:參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點O為極點, 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程,并 C的焦點F的直角坐標(biāo);

2)已知點,若直線C相交于A,B兩點,且,求的面積.

【答案】1 2

【解析】試題分析:(1根據(jù),曲線的極坐標(biāo)方程為直角坐標(biāo)方程,根據(jù)拋物線性質(zhì)得焦點直角坐標(biāo)(2利用直線參數(shù)方程幾何意義化簡,聯(lián)立直線參數(shù)方程與拋物線方程,利用韋達定理代入化簡得,從而可得即得的面積.

試題解析:(Ⅰ)原方程變形為,

C的直角坐標(biāo)方程為,其焦點為

(Ⅱ)把的方程代入

平方得

把①代入②得是直線的傾斜角,

的普通方程為

∴△FAB的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為 ,且a1與a5的等差中項為18.
(1)求{an}的通項公式;
(2)若an=2log2bn , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)五邊形中,

,沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.

1)求證:平面平面;

2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),在[0,+∞)上單調(diào)遞增.若a=f(log ),b=f(log ),c=f(﹣2),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>c>a
C.c>b>a
D.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點的動直線l與圓C1:x2+y2﹣6x+5=0相交于不同的兩點A,B.
(1)求圓C1的圓心坐標(biāo);
(2)求線段AB 的中點M的軌跡C的方程;
(3)是否存在實數(shù) k,使得直線L:y=k(x﹣4)與曲線 C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣2≤x≤5},集合B={x|p+1≤x≤2p﹣1},若A∩B=B,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2﹣4x+3.
(1)求f[f(﹣1)]的值;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,BC=4,且sinB,sinA,sinC成等差數(shù)列,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點A(1,0),D(﹣1,0),點B,C在單位圓O上,且∠BOC=

(1)若點B( , ),求cos∠AOC的值;
(2)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.

查看答案和解析>>

同步練習(xí)冊答案