已知函數(shù)f(x)=
4x-a
1+x2
在區(qū)間[m,n]上為增函數(shù),且f(m)f(n)=-4,當(dāng)f(n)-f(m)取得最小值時(shí),n-m的值為
 
,此時(shí)a=
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得f(m)<0,f(n)>0,f(n)-f(m)=f(n)+[-f(m)],利用基本不等式求得它的最小值,以及取得最小值時(shí)a、m、n的值,從而得出結(jié)論.
解答: 解:由于函數(shù)f(x)=
4x-a
1+x2
在區(qū)間[m,n]上為增函數(shù),f(m)f(n)=-4,
可得f(m)<0,f(n)>0,f(n)-f(m)=f(n)+[-f(m)]≥2
f(n)•[-f(m)]
=4,
當(dāng)且僅當(dāng)f(n)=-f(m)=2時(shí)取等號(hào).
4n-a
1+n2
=2=-
4m-a
1+m2
,化簡(jiǎn)可得-a=2(n-1)2≥0,a=2(m+1)2≥0,
即a≤0,且a≥0,
求得a=0,n=1,m=-1,故n-m=2,
故答案為:2; 0.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的性質(zhì),基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

P是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的一個(gè)點(diǎn),F(xiàn)為該橢圓的左焦點(diǎn),O為坐標(biāo)原點(diǎn),且△POF為正三角形.則該橢圓離心率為( 。
A、4-2
3
B、2-
3
C、
3
-1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是等邊三角形.
(1)求向量
AB
與向量
BC
的夾角;
(2)若E為BC的中點(diǎn),求向量
AE
EC
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
①若函數(shù)y=2cos(ax-
π
3
)的最小正周期是4π,則a=
1
2
;
②函數(shù)y=
sin2x-sinx
sinx-1
是奇函數(shù);
③函數(shù)y=sinx+sin|x|的值域是[0,2];
④當(dāng)a>1,n>0時(shí),總存在x0,當(dāng)x>x0時(shí),就有l(wèi)ogax<xn<ax
其中正確命題個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-cosx
sinx
的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長(zhǎng)為2,∠BAD=60°,M為CD的中點(diǎn),若N為菱形內(nèi)任意一點(diǎn)(含邊界),且|MN|≤1,則
AM
AN
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):y=(2x-1)2(3x+2ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求
1
sinα•cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cosx(2
3
sinx-cosx)+acos2
π
2
+x)的一個(gè)零點(diǎn)是x=
π
12

(1)求函數(shù)f(x)的周期;
(2)求函數(shù)f(x)單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案