分析 將圓的方程轉化為標準方程,求出圓心和半徑.再求出圓心到直線的距離,把此距離減去、加上半徑,即可得到圓x2+y2-2x+4y-3=0上的點到直線x-y+5=0的距離的取值范圍.
解答 解:圓x2+y2-2x+4y-3=0可化為(x-1)2+(y+2)2=8.
∴圓心C(1,-2),半徑r=2$\sqrt{2}$.
∴圓心C(1,-2)到直線x-y+5=0的距離為d=$\frac{|1+2+5|}{\sqrt{2}}$=4$\sqrt{2}$,
∴圓x2+y2-2x+4y-3=0上的點到直線x-y+5=0的距離的取值范圍為(2$\sqrt{2}$,6$\sqrt{2}$).
故答案為:(2$\sqrt{2}$,6$\sqrt{2}$).
點評 本題考查直線和圓的位置關系,點到直線的距離公式等知識的綜合應用,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | A+C=2B | B. | B2=AC | C. | 3(B-A)=C | D. | A2+B2=A(B+C) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧q | C. | ¬p∨q | D. | p∨q |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{8}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{28}{5}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30輛 | B. | 35輛 | C. | 40輛 | D. | 50輛 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com