【題目】函數(shù)f(x)=5|x|向右平移1個(gè)單位,得到y(tǒng)=g(x)的圖像,則g(x)關(guān)于( )
A.直線x=﹣1對稱
B.直線x=1對稱
C.原點(diǎn)對稱
D.y軸對稱
【答案】B
【解析】解:函數(shù)f(x)=5|x|滿足f(﹣x)=f(x),
故f(x)為偶函數(shù),圖像關(guān)于y軸對稱,
將其向右平移1個(gè)單位,得到y(tǒng)=g(x)的圖像,
則g(x)關(guān)于直線x=1對稱,
故選:B
【考點(diǎn)精析】利用指數(shù)函數(shù)的圖像與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知a0=1, 即x=0時(shí),y=1,圖象都經(jīng)過(0,1)點(diǎn);ax=a,即x=1時(shí),y等于底數(shù)a;在0<a<1時(shí):x<0時(shí),ax>1,x>0時(shí),0<ax<1;在a>1時(shí):x<0時(shí),0<ax<1,x>0時(shí),ax>1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y=lnx},集合B={﹣2,﹣1,1,2},則A∩B=( )
A.(1,2)
B.{1,2}
C.{﹣1,﹣2}
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=ax-x-a有兩個(gè)零點(diǎn),則a的取值范圍是( )
A. (1,+∞) B. (0,1) C. (0,+∞) D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an=3an﹣1+4(n∈N*且n≥2),,則數(shù)列{an}通項(xiàng)公式an為( )
A. 3n﹣1 B. 3n+1﹣8 C. 3n﹣2 D. 3n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有直線m、n和平面α、β.下列四個(gè)命題中,正確的是( )
A.若m∥α,n∥α,則m∥n
B.若mα,nα,m∥β,n∥β,則α∥β
C.若α⊥β,mα,則m⊥β
D.若α⊥β,m⊥β,mα,則m∥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意兩個(gè)集合M、N,定義:M-N={x|x∈M,且xN},M*N=(M-N)∪(N-M),設(shè)M={y|y=x2,x∈R},N={y|y=3sinx,x∈R},則M*N=__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是兩條不同直線,α、β、γ是三個(gè)不同平面.下列命題中正確的是 . (1.)若α⊥γ,β⊥γ,則α∥β
(2.)若m⊥α,n⊥α,則m∥n
(3.)若m∥α,n∥α,則m∥n
(4.)若m∥α,m∥β,則α∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的不等式lg(|x+3|﹣|x﹣7|)<m.
(1)當(dāng)m=1時(shí),解此不等式;
(2)設(shè)函數(shù)f(x)=lg(|x+3|﹣|x﹣7|),當(dāng)m為何值時(shí),f(x)<m恒成立?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com