已知函數(shù)
(1)若函數(shù)處的切線方程為,求實(shí)數(shù)的值;
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍.

(1) (2) 

解析試題分析:(1)
由已知         5分
(2)的定義域.
,當(dāng)恒成立,即恒成立。
由于當(dāng)且僅當(dāng),即時(shí)取等號(hào)。
                                 5分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):已知函數(shù)單調(diào)求參數(shù)范圍時(shí),要在定義域區(qū)間上令,因在定義域范圍內(nèi)有限個(gè)導(dǎo)數(shù)等于零的點(diǎn)不影響其單調(diào)性

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)在下列定義域內(nèi)的值域。
(1)函數(shù)y=f(x)的值域
(2)(其中)函數(shù)y=f(x)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上奇函數(shù)與偶函數(shù),對(duì)任意滿足+a為實(shí)數(shù)
(1)求奇函數(shù)和偶函數(shù)的表達(dá)式
(2)若a>2, 求函數(shù)在區(qū)間上的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-x+3x+9x+a
⑴求f(x)的單調(diào)遞減區(qū)間;⑵若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在[-1,1]上的奇函數(shù)滿足,且當(dāng),時(shí),有
(1)試問函數(shù)f(x)的圖象上是否存在兩個(gè)不同的點(diǎn)AB,使直線AB恰好與y軸垂直,若存在,求出A,B兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由并加以證明.
(2)若對(duì)所有恒成立,
求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù)
(1)若,寫出函數(shù)的單調(diào)遞增區(qū)間(不必證明);
(2)若,當(dāng)時(shí),求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)判斷的奇偶性
(2)用定義法證明上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求函數(shù)上的最小值;
(2)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),且.
(1)求的值;
(2)若令,求取值范圍;
(3)將表示成以)為自變量的函數(shù),并由此,求函數(shù)的最大值與最小值及與之對(duì)應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案