已知圓的半徑為,若是其圓周上的兩個三等分點,則的值等于                                                                                        

                                                                        (    )

       A.             B.                  C.               D.

 

【答案】

D

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓中心在原點,焦點在y軸上,離心率為
3
3
,以原點為圓心,橢圓短半軸長為半徑的圓與直線y=x+2相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)點F是橢圓在y軸正半軸上的一個焦點,點A,B是拋物線x2=4y上的兩個動點,且滿足
AF
FB
 (λ>0)
,過點A,B分別作拋物線的兩條切線,設(shè)兩切線的交點為M,試推斷
FM
AB
是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09 年聊城一模文)(14分)

    已知橢圓的離心率為,直線ly=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切。

   (1)求橢圓C1的方程;

   (2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;

   (3)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若是鈍角三角形,求直線m的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)  已知橢圓的離心率為,直線ly=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.(1)求橢圓C1的方程;(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程; (3)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若是鈍角三角形,求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省晉江市四校高三第二次聯(lián)合考試文科數(shù)學試卷 題型:選擇題

已知圓的半徑為,若是其圓周上的兩個三等分點,則的值等于(    )

    A.           B.   C. D.

 

查看答案和解析>>

同步練習冊答案