【題目】已知是拋物線上任意一點,,且點為線段的中點.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)若為點關(guān)于原點的對稱點,過的直線交曲線于、 兩點,直線交直線于點,求證:.
【答案】(Ⅰ) (Ⅱ)見證明
【解析】
(Ⅰ)設(shè),,根據(jù)中點坐標(biāo)公式可得,代入曲線方程即可整理得到所求的軌跡方程;(Ⅱ)設(shè),設(shè),,將直線與曲線聯(lián)立可得;由拋物線定義可知,若要證得只需證明垂直準(zhǔn)線,即軸;由直線的方程可求得,可將點橫坐標(biāo)化簡為,從而證得軸,則可得結(jié)論.
(Ⅰ)設(shè),
為中點
為曲線上任意一點 ,代入得:
點的軌跡的方程為:
(Ⅱ)依題意得,直線的斜率存在,其方程可設(shè)為:
設(shè),
聯(lián)立得:,則
直線的方程為,是直線與直線的交點
根據(jù)拋物線的定義等于點到準(zhǔn)線的距離
在準(zhǔn)線上 要證明,只需證明垂直準(zhǔn)線
即證軸
的橫坐標(biāo):
軸成立 成立
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如橢圓C:的兩個焦點與其中一個頂點構(gòu)成一個斜邊長為4的等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動直線l交橢圓C于P,Q兩點,直線OP,OQ的斜率分別為k,k'.若,求證△OPQ的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,底面是等腰三角形,且,側(cè)面 是菱形,,平面平面,點是的中點.
(1)求證:;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,
①求曲線在點處的切線方程;
②求函數(shù)在區(qū)間上的值域.
(2)對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程與直線的極坐標(biāo)方程;
(2)若射線與曲線交于點(不同于原點),與直線交于點,直線與極軸所在直線交于點.求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{}的首項a1=2,前n項和為,且數(shù)列{}是以為公差的等差數(shù)列·
(1)求數(shù)列{}的通項公式;
(2)設(shè),,數(shù)列{}的前n項和為,
①求證:數(shù)列{}為等比數(shù)列,
②若存在整數(shù)m,n(m>n>1),使得,其中為常數(shù),且-2,求的所有可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車?yán)锍痰牡燃,右表是?100 輛新車模型在一個耗油單位內(nèi)行車?yán)锍蹋▎挝唬汗铮┑臏y試結(jié)果.
(Ⅰ)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;
(Ⅱ)用分層抽樣的方法從行車?yán)锍淘趨^(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車?yán)锍淘赱40,42)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M與分別相切于點B,D,圓與分別相切于點C,D.
(1)若,求圓的半徑;(結(jié)果精確到0.1米)
(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當(dāng)多大時,總造價最低?最低總造價是多少?(結(jié)果分別精確到0.1°和0.1千元)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com