【題目】已知函數(shù),,當時,這兩個函數(shù)圖象的交點個數(shù)為____個.(參考數(shù)值:)
【答案】3.
【解析】
原問題等價于函數(shù)y=﹣x2+8x﹣6lnx與函數(shù)y=m,m∈(7,8)的交點個數(shù),作出函數(shù)圖象觀察即可得出答案.
函數(shù)f(x)與函數(shù)g(x)的交點個數(shù),即為﹣x2+8x=6lnx+m的解的個數(shù),亦即函數(shù)y=﹣x2+8x﹣6lnx與函數(shù)y=m,m∈(7,8)的交點個數(shù),
,令y′=0,解得x=1或x=3,
故當x∈(0,1)時,y′<0,此時函數(shù)y=﹣x2+8x﹣6lnx單調(diào)遞減,
當x∈(1,3)時,y′>0,此時函數(shù)y=﹣x2+8x﹣6lnx單調(diào)遞增,
當x∈(3,+∞)時,y′<0,此時函數(shù)y=﹣x2+8x﹣6lnx單調(diào)遞減,
且y|x=1=7,y|x=3=15﹣6ln3>8,
作出函數(shù)y=﹣x2+8x﹣6lnx的草圖如下,
由圖可知,函數(shù)y=﹣x2+8x﹣6lnx與函數(shù)y=m,m∈(7,8)有3個交點.
故答案為:3.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,函數(shù)的圖象恒不在軸的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),其中表示中的最小者.下列說法錯誤的是
A. 函數(shù)為偶函數(shù) B. 若時,有
C. 若時, D. 若時,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個小商店從一家有限公司購進21袋白糖,每袋白糖的標準質(zhì)量是500g,為了了解這些白糖的質(zhì)量情況,稱出各袋白糖的質(zhì)量(單位:g)如下:
486 495 496 498 499 493 493 498 484 497 504 489 495 503
499 503 509 498 487 500 508
(1)21袋白糖的平均質(zhì)量是多少?標準差s是多少?
(2)質(zhì)量位于與之間有多少袋白糖?所占的百分比是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校有高中學生500人,其中男生320人,女生180人.有人為了獲得該校全體高中學生的身高信息,采用分層抽樣的方法抽取樣本,并觀測樣本的指標值(單位:cm),計算得男生樣本的均值為173.5,方差為17,女生樣本的均值為163.83,方差為30.03.
(1)根據(jù)以上信息,能夠計算出總樣本的均值和方差嗎?為什么?
(2)如果已知男、女樣本量按比例分配,你能計算出總樣本的均值和方差各為多少嗎?
(3)如果已知男、女的樣本量都是25,你能計算出總樣本的均值和方差各為多少嗎?它們分別作為總體均值和方差的估計合適嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.
(1)求橢圓的方程;
(2)不過點的動直線與橢圓相交于兩點,且.求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com