【題目】在區(qū)間上單調(diào)遞減,則的取值范圍為( )

A. B. C. D.

【答案】A

【解析】分析:由題意,在區(qū)間(﹣∞,1]上,a的取值需令真數(shù)x2﹣2ax+1+a>0,且函數(shù)u=x2﹣2ax+1+a在區(qū)間(﹣∞,1]上應(yīng)單調(diào)遞減,這樣復(fù)合函數(shù)才能單調(diào)遞減.

詳解:令u=x2﹣2ax+1+a,則f(u)=lgu,

配方得u=x2﹣2ax+1+a=(x﹣a)2 ﹣a2+a+1,故對(duì)稱(chēng)軸為x=a,如圖所示:

由圖象可知,當(dāng)對(duì)稱(chēng)軸a1時(shí),u=x2﹣2ax+1+a在區(qū)間(﹣∞,1]上單調(diào)遞減,

又真數(shù)x2﹣2ax+1+a>0,二次函數(shù)u=x2﹣2ax+1+a在(﹣∞,1]上單調(diào)遞減,

故只需當(dāng)x=1時(shí),若x2﹣2ax+1+a>0,

則x∈(﹣∞,1]時(shí),真數(shù)x2﹣2ax+1+a>0,

代入x=1解得a2,所以a的取值范圍是[1,2)

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,為了測(cè)量A,B處島嶼的距離,小明在D處觀測(cè),A,B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛40海里至C處,觀測(cè)B在C處的正北方向,A在C處的北偏西60°方向,則A,B兩處島嶼間的距離為(
A. 海里
B. 海里
C. 海里
D.40海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

討論的單調(diào)性;

,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠要制造A種電子裝置45臺(tái),B種電子裝置55臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個(gè)和5個(gè),乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個(gè)和6個(gè),求兩種薄鋼板各用多少?gòu),才能使總的面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年俄羅斯世界杯激戰(zhàn)正酣,某校工會(huì)對(duì)全校教職工在世界杯期間每天收看比賽的時(shí)間作了一次調(diào)查,得到如下頻數(shù)分布表:

收看時(shí)間

(單位:小時(shí))

14

28

20

12

(1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為球迷,否則定義為非球迷,請(qǐng)根據(jù)頻數(shù)分布表補(bǔ)全列聯(lián)表:

合計(jì)

球迷

40

非球迷

合計(jì)

并判斷能否有90%的把握認(rèn)為該校教職工是否為球迷性別有關(guān);

(2)在全校球迷中按性別分層抽樣抽取6名,再?gòu)倪@6球迷中選取2名世界杯知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),則使得的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有同一型號(hào)的汽車(chē)100輛,為了解這種汽車(chē)每耗油所行路程的情況,現(xiàn)從中隨機(jī)地抽出10輛,在同一條件下進(jìn)行耗油所行路程的試驗(yàn),得到如下樣本數(shù)據(jù)(單位:km):13.7, 12.7, 14.4, 13.8, 13.3 ,12.5 ,13.5 ,13.6 ,13.1 ,13.4,

并分組如下:

(1)完成上面的頻率分布表;

(2)根據(jù)上表,在坐標(biāo)系中畫(huà)出頻率分布直方圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求證:當(dāng)時(shí),函數(shù)上存在唯一的零點(diǎn);

(Ⅱ)當(dāng)時(shí),若存在,使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案