已知函數(shù)f(x)=loga
x-1
x+1
(其中a>0且a≠1),
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間(不必寫出證明過程).
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)的定義域及其求法,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)對數(shù)函數(shù)的真數(shù)大于0,求出f(x)的定義域;
(2)根據(jù)函數(shù)奇偶性的定義,判斷f(x)是奇函數(shù);
(3)討論a>1和1>a>0時,f(x)的增減性即可.
解答: 解:(1)∵函數(shù)f(x)=loga
x-1
x+1
(a>0且a≠1),
x-1
x+1
>0,
解答x>1,或x<-1;
∴f(x)的定義域是(-∞,-1)∪(1,+∞);
(2)∵f(x)的定義域是(-∞,-1)∪(1,+∞),
則對定義域內(nèi)的x,都有
f(-x)=loga
-x-1
-x+1
=loga
x+1
x-1
=-loga
x-1
x+1
=-f(x),
∴f(x)是定義域上的奇函數(shù);
(3)當a>1時,f(x)在區(qū)間(-∞,-1),和(1,+∞)上是增函數(shù);
當1>a>0時,f(x)在區(qū)間(-∞,-1),和(1,+∞)上是減函數(shù);
∴a>1時,f(x)的增區(qū)間是(-∞,-1),(1,+∞);
1>a>0時,f(x)的減區(qū)間是(-∞,-1),(1,+∞).
點評:本題考查了對數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了函數(shù)的單調(diào)性與奇偶性的判斷問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
3x-2,x≥2
-2,x<2
的值的程序框圖如圖所示.
(1)指出程序框圖中的錯誤之處并重新繪制解決該問題的程序框圖;
(2)寫出對應(yīng)程序語句,且回答下面提出的問題:
問題1,要使輸出的值為7,輸入的x的值應(yīng)為多少?
問題2,要使輸出的值為正數(shù),輸入的x應(yīng)滿足什么條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=2,點(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3,…
(1)證明數(shù)列{lg(1+an)}是等比數(shù)列;
(2)設(shè)Tn=(1+a1)•(1+a2)…(1+an),求Tn及數(shù)列{an}的通項;
(3)記bn=
1
an
+
1
an+2
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2
-2x(a<0).
(Ⅰ)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求實數(shù)f′(x)≥0的取值范圍;
(Ⅱ)若a=-
1
2
,且關(guān)于a≤
1-2x
x2
=(
1
x
-1)2
-1的方程f(x)=-
1
2
x+b在[1,4]上恰有兩個不等的實根,求實數(shù)b的取值范圍;
(Ⅲ)設(shè)各項為正數(shù)的數(shù)列{an}滿足a1=1,an+1=lnan+an+2(n∈N*),求證:an≤2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是單位圓和x軸正半軸的交點,P,Q是單位圓上兩點,O是坐標原點,且∠AOP=β,β∈(0,
π
2
),∠AOQ=α,α∈[0,π).
(1)若點Q的坐標是 (m,
4
5
),其中m<0,求cos(π-α)+sin(-α)的值.
(2)設(shè)P(
3
2
,
1
2
),函數(shù)f(α)=sin(α+β),求f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1的中心在坐標原點,兩個焦點分別為F1(-2,0),F(xiàn)2(2,0),點A(2,3)在橢圓C1上,過點A的直線L與拋物線C2:x2=4y交于不同兩點B,C,拋物線C2在點B,C處的切線分別為l1,l2,且l1與l2交于點P.
(1)求橢圓C1的方程;
(2)是否存在滿足(|
PF1
|-|
AF1
|)+(|
PF2
|-|
AF2
|)=0的點P?若存在,指出這樣的點P有幾個,并求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不用計算器計算
(1)(-
27
8
 -
2
3
+(0.002) -
1
2
-10(
5
-2)-1+(
2
-
3
0
(2)log3
27
+lg25+lg4+7log72+(-9.8)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是描述求一元二次方程ax2+bx+c=0的根的過程的程序框圖,請問虛線框內(nèi)是什么結(jié)構(gòu)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足:存在T∈R,T≠0,對定義域內(nèi)的任意x,f(x+T)=f(x)+f(T)恒成立,則稱f(x)為T函數(shù).現(xiàn)給出下列函數(shù):
y=
1
x
; 
②y=2x;
③y=1nx;
④y=sinx;
⑤y=x2
其中為T函數(shù)的序號是
 
.(把你認為正確的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案