【題目】如圖,,是同一平面內的三條平行直線, 之間的距離是1之間的距離是2,三角形的三個頂點分別在,.

1)若為正三角形,求其邊長;

2)若是以B為直角頂點的直角三角形,求其面積的最小值.

【答案】122

【解析】

1)根據(jù)題意作高,.根據(jù)等邊三角形及直角三角形的性質,設,則,求出根據(jù)三角形相似根據(jù)其相似比可求出,的長,再根據(jù)勾股定理即可解答.

2)過點B,交M,交N,設,,由,得,則,,,由此利用均值不等式能求出面積的最小值.

解:(1)作高,,(如圖),

,則

于是,,

,

,

,即,∴,

,

,∴,

.

的邊長為.

2)過點B,交M,交N,設,

,∴,即,∴,

,

是以B為直角頂點的直角三角形,

當且僅當,即時,面積取最小值2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電影院共有1000個座位,票價不分等次,根據(jù)影院的經營經驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)

問:

(1)把y表示為x的函數(shù),并求其定義域;

(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1

1)求橢圓C的方程;

2)設點M為橢圓上第一象限內一動點,A,B分別為橢圓的左頂點和下頂點,直線MBx軸交于點C,直線MAy軸交于點D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間上是單調遞增,若,則的取值范圍為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)設數(shù)列的前n項和為,數(shù)列滿足:,且數(shù)列的前

n項和為.

(1) 的值;

(2) 求證:數(shù)列是等比數(shù)列;

(3) 抽去數(shù)列中的第1項,第4項,第7項,……,第3n-2項,……余下的項順序不變,組成一個新數(shù)列,若的前n項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列滿足4Sn=an2+2an+1.

(1)求數(shù)列{an}的通項公式;

(2)設bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到點的距離,等于它到直線的距離.

(1)求點的軌跡的方程;

2)過點任意作互相垂直的兩條直線,分別交曲線于點

設線段的中點分別為,求證:直線恒過一個定點;

3)在(2)的條件下,求面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))且函數(shù)是奇函數(shù).

(1)求的值;

(2)是否存在這樣的實數(shù),使對所有的均成立?若存在,求出適合條件的實數(shù)的值或范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案