定義一種運算如下:
ab
cd
=ad-bc,則復(fù)數(shù)
1+i-1
23i
的共軛復(fù)數(shù)是
 
考點:復(fù)數(shù)代數(shù)形式的混合運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:直接由定義得到復(fù)數(shù)
1+i-1
23i
,取其共軛得答案.
解答: 解:由定義知,復(fù)數(shù)
1+i-1
23i
=(1+i)i+23=22+i.
∴復(fù)數(shù)
1+i-1
23i
的共軛復(fù)數(shù)是22-i.
故答案為:22-i.
點評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(2,-3),B(-3,-2),直線l過點P(1,1)且與線段AB有交點,則直線l的斜率k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中的圖象所表示的函數(shù)的解析式為(  )
A、y=
3
2
+|x-1|(0≤x≤2)
B、y=
3
2
|x-1|(0≤x≤2)
C、y=
3
2
-|x-1|(0≤x≤2)
D、2-|x-1|(0≤x≤2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A為銳角,記角A,B,C所對的邊分別為a,b,c,設(shè)向量
.
m
=(cosA,sinA),
.
n
=(cosA,-sinA),且
.
m
.
n
=
1
2

(1)求角A的大;
(2)若a=
7
,c=
3
求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-2+3(a>0且a≠1)恒過定點P,則點P的坐標為( 。
A、(0,3)
B、(0,4)
C、(2,4)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是把二進制數(shù)11111(2)化為十進制數(shù)的一個程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( 。
A、i>4B、i≤4
C、i>5D、i≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M=﹛2,lga﹜,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x∈R|x2-3x+2≤0},B={x∈R|4x-a•2x+9≥0}.
(Ⅰ)當(dāng)a=10時,求A和B;
(Ⅱ)若A⊆B.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)f(y)=f(2xy+3)+3f(x+y)-3f(x)+6x,則f(x)=
 

查看答案和解析>>

同步練習(xí)冊答案