已知點A(2,-3),B(-3,-2),直線l過點P(1,1)且與線段AB有交點,則直線l的斜率k的取值范圍為
 
考點:直線的斜率
專題:直線與圓
分析:由題意畫出圖形,求出PA和PB的斜率,數(shù)形結合得答案.
解答: 解:如圖,

kPA=
-3-1
2-1
=-4
,kPB=
-2-1
-3-1
=
3
4

∴直線l的斜率k的取值范圍為(-∞,-4]∪[
3
4
,+∞).
故答案為:(-∞,-4]∪[
3
4
,+∞).
點評:本題考查了直線的斜率,考查了數(shù)形結合的解題思想方法,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足約束條件
x-y+5≥0
x+2y-1≥0
x≤3
 
,則z=x-y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A(0,3),C(1,-2),若點B與點A關于直線y=-x對稱,
(Ⅰ)試求直線BC的方程;
(Ⅱ)試求線段BC的垂直平分線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線ax+2y-1=0與直線2x-3y-1=0垂直,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點A(4,-6),B(-4,0),C(-1,4),求
(1)AC邊上的高BD所在直線方程;
(2)BC邊的垂直平分線EF所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各式中錯誤的是( 。
A、30.9>30.8
B、log0.50.4>log0.50.5
C、0.65-0.1<0.650.1
D、3 -
1
2
<2 -
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知g(x)=-x2-3,f(x)=ax2+bx+c(a≠0),函數(shù)h(x)=g(x)+f(x)是奇函數(shù).
(1)求a,c的值;
(2)當x∈[-1,2]時,f(x)的最小值是1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

23.已知向量
m
=(1,
a
x
),
n
=(x,1)其中a∈R,函數(shù)f(x)=
m
n

(Ⅰ)試求函數(shù)f(x)的解析式;
(Ⅱ)試求當a=1時,函數(shù)f(log2x)在區(qū)間(1,+∞)上的最小值;
(Ⅲ)若函數(shù)f(x)在區(qū)間[1,+∞)上為增函數(shù),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義一種運算如下:
ab
cd
=ad-bc,則復數(shù)
1+i-1
23i
的共軛復數(shù)是
 

查看答案和解析>>

同步練習冊答案