已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=
-7xx2+x+1
.

(1)求當x<0時,f(x)的解析式;
(2)試證明函數(shù)y=f(x)(x≥0)在[0,1]上為減函數(shù).
分析:(1)由偶函數(shù)的定義:若偶函數(shù)f(x)的定義域為I,則,都有f(-x)=f(x).所以?x<0,求出f(-x)的解析式即可求出f(x)的解析式.
(2)根據(jù)減函數(shù)的定義,?x1<x2∈D,若f(x1)>f(x2)則函數(shù)f(x)在區(qū)間D內(nèi)為減函數(shù).
解答:解:(1)?x<0,則-x>0,f(-x)=-
7(-x)
(-x)2+(-x)+1
=
7x
x2-x+1

∵f(x)為偶函數(shù),
f(x)=f(-x)=
7x
x2-x+1
(x<0)

(2)?x1,x2∈[0,1],且x1<x2,則f(x1)-f(x2)═
7(x1-x2)(x1x2-1)
(
x
2
1
+x1+1)(
x
2
2
+x2+1)

當0≤x1<x2≤1時,x1-x2<0,x1x2-1<0,而x12+x1+1>0,x22+x2+1>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2
∴y=f(x)(x≥0)在[0,1]上為減函數(shù)
點評:本題考查了函數(shù)奇偶性以及單調(diào)性的定義,屬于基本知識的考查.定義是數(shù)學問題的基礎(chǔ),在學習過程中對于定義要做到理解和靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計算:[f(1)]2-[g(1)]2
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設(shè)O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

同步練習冊答案