【題目】如圖①,已知矩形ABCD滿足AB=5,,沿平行于AD的線段EF向上翻折(點E在線段AB上運動,點F在線段CD上運動),得到如圖②所示的三棱柱.
⑴若圖②中△ABG是直角三角形,這里G是線段EF上的點,試求線段EG的長度x的取值范圍;
⑵若⑴中EG的長度為取值范圍內(nèi)的最大整數(shù),且線段AB的長度取得最小值,求二面角的值;
⑶在⑴與⑵的條件都滿足的情況下,求三棱錐A-BFG的體積.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題。規(guī)定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.
(I)求甲能入選的概率.
(II)求乙得分的分布列和數(shù)學期望;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,E,F分別為AC,BC的中點.
(1)求證:EF∥平面PAB;
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求證:平面PEF⊥平面PBC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A 為橢圓的下頂點,過 A 的直線 l 交拋物線于B、C 兩點,C 是 AB 的中點.
(I)求證:點C的縱坐標是定值;
(II)過點C作與直線 l 傾斜角互補的直線l交橢圓于M、N兩點,求p的值,使得△BMN的面積最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)p的取值范圍;
(2)問是否存在常數(shù),使得當時,的值域為區(qū)間D,且D的長度為.
(注:區(qū)間 的長度為).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上的點到焦點的最長距離為.
(1)求橢圓C的方程;
(2)過點P(0,2)的直線l(不過原點O)與橢圓C交于兩點A、B,M為線段AB的中點.
(。┳C明:直線OM與l的斜率乘積為定值;
(ⅱ)求△OAB面積的最大值及此時l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自2017年,大連“蝸享出行”正式引領(lǐng)共享汽車,改變?nèi)藗儌鹘y(tǒng)的出行理念,給市民出行帶來了諸多便利該公司購買了一批汽車投放到市場給市民使用據(jù)市場分析,每輛汽車的營運累計收入單位:元與營運天數(shù)滿足.
要使營運累計收入高于1400元求營運天數(shù)的取值范圍;
每輛汽車營運多少天時,才能使每天的平均營運收入最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點到短軸的端點的距離為,離心率為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,過點作平行于軸的直線,交直線于點,求證:直線恒過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com