函數(shù)f(x)=
3x
ex-1
+lg(2-x)
的定義域是(  )
分析:由函數(shù)的解析式可得
ex>1
2-x>0
,由此解得 x 的范圍,即可求得函數(shù)的定義域.
解答:解:由于函數(shù)f(x)=
3x
ex-1
+lg(2-x)
,故有
ex>1
2-x>0
,解得 0<x<2,
故選C.
點(diǎn)評(píng):本題主要考查求函數(shù)的定義域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-k2+k+2(k∈Z),且f(2)<f(3)
(1)求k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-p•f(x)+(2p-1)x在區(qū)間[-1,2]上的值域?yàn)?span id="uscw4gw" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">[-4,
178
].若存在,求出這個(gè)p的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
x+2
,數(shù)列{an}滿足:a1=
4
3
,an+1=f(an).

(1)求證數(shù)列{
1
an
}
為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)記Sn=a1a2+a2a3+…+anan+1,求證:Sn
8
3
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x-1x<0
x2-1x≥0
的反函數(shù)為f-1(x),則f-1(1)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+
alnxx
,其中a為常數(shù).
(1)證明:對(duì)任意a∈R,y=f(x)的圖象恒過定點(diǎn);
(2)當(dāng)a=-1時(shí),判斷函數(shù)y=f(x)是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對(duì)任意a∈(0,m]時(shí),y=f(x)恒為定義域上的增函數(shù),求m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案