精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x3+x-16.求曲線y=f(x)在點(2,-6)處的切線的方程

y=13x-32

解析試題分析:根據導數的幾何意義,先求函數的導函數,進而求出,得到曲線
在點處的切線的斜率,由點斜式得切線方程.
試題解析:
∵f ′(x)=3x2+1,     4分
∴f(x)在點(2,-6)處的切線的斜率為k=f ′(2)=13.      9分
∴切線的方程為y=13x-32.      12分
考點:1、導數的幾何意義;2、直線的點斜式方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知a∈R,函數f(x)=4x3-2ax+a.
(1)求f(x)的單調區(qū)間;
(2)證明:當0≤x≤1時,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=在點(-1,f(-1))處的切線方程為x+y+3=0.
(1)求函數f(x)的解析式.
(2)設g(x)=lnx.求證:g(x)≥f(x)在[1,+∞)上恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3+x-16.
(1)求曲線y=f(x)在點(2,-6)處的切線方程.
(2)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點坐標與切線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3-x2+ax-a(a∈R).
(1)當a=-3時,求函數f(x)的極值.
(2)若函數f(x)的圖象與x軸有且只有一個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求下列各函數的導數:
(1)y=(x+1)(x+2)(x+3).
(2)y=+.
(3)y=e-xsin2x.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求曲線在點的切線方程;
(2)對一切,恒成立,求實數的取值范圍;
(3)當時,試討論內的極值點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中,
(1)當時,求曲線在點處的切線方程;
(2)討論的單調性;
(3)若有兩個極值點,記過點的直線的斜率為,問是否存在,使得?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=axn(1-x)+b(x>0),n為正整數,ab為常數.曲線yf(x)在(1,f(1))處的切線方程為xy=1.
(1)求ab的值;
(2)求函數f(x)的最大值.

查看答案和解析>>

同步練習冊答案