分析 由圖象可得A值,結(jié)合周期公式可得ω,代點(diǎn)可得φ值,可得解析式.
解答 解:由圖象可得A=2,周期T=$\frac{11π}{6}$-(-$\frac{π}{6}$)=2π,
由周期公式可得ω=1,∴y=2sin(x+φ),
代點(diǎn)(-$\frac{π}{6}$,0)可得0=2sin(-$\frac{π}{6}$+φ),
結(jié)合0<φ<$\frac{π}{2}$可得φ=$\frac{π}{6}$
故答案為:$y=2sin(x+\frac{π}{6})$
點(diǎn)評(píng) 本題考查正弦函數(shù)的圖象和性質(zhì),屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {α|90°<α<180°} | |
B. | {α|90°+k•180°<α<180°+k•180°,k∈Z} | |
C. | {α|-270°+k•180°<α<-180°+k•180°,k∈Z} | |
D. | {α|-270°+k•360°<α<-180°+k•360°,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m∥n,n?α,則m∥α | B. | 若m⊥n,n?α,則m⊥α | ||
C. | 若m∥n,n?α,m?α,則m∥α | D. | 若m⊥n,n?α,m?α,則m⊥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{3}{4}$ | B. | $-\frac{{\sqrt{3}}}{4}$ | C. | $-\frac{3}{2}$ | D. | $-\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com