△ABC的三個內(nèi)角A,B,C所對的分別為a,b,c,若
cosA
cosB
=
b
a
=
2
,則角C的大小為( 。
A、60°B、75°
C、90°D、120°
考點:正弦定理
專題:解三角形
分析:根據(jù)正弦定理化簡
cosA
cosB
=
b
a
,由二倍角的正弦公式得到A、B的關(guān)系,再結(jié)合條件和內(nèi)角和定理求出角C.
解答: 解:由正弦定理得,
cosA
cosB
=
b
a
=
sinB
sinA

則sinAcosA=sinBcosB,即sin2A=sin2B,
所以2A=2B或2A+2B=180°,得A=B或A+B=90°,
因為
b
a
=
2
,所以A+B=90°,
則C=180°-(A+B)=90°,
故選:C.
點評:本題考查正弦定理,內(nèi)角和定理,以及二倍角的正弦公式,注意三角形的邊角關(guān)系的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平行六面體ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=∠BAA′=∠DAA′=60°,則AC′的長為(  )
A、5
2
B、
62
C、10
D、
97

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,且它的一個焦點與拋物線y2=24x的焦點重合,則此雙曲線的方程為(  )
A、
x2
12
-
y2
24
=1
B、
x2
48
-
y2
96
=1
C、
x2
3
-
2y2
3
=1
D、
x2
3
-
y2
6
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
c
a
,
b
上的投影分別是1與2,且|
c
|=
10
,則
c
a
+
b
所成夾角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
滿足:|
a
|=3
,|
b
|=2
|
a
+
b
|=4
,則|
a
-
b
|
=( 。
A、
3
B、
5
C、3
D、
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+1)2+(y-2)2=6.直線l:mx-y+1-m=0(m∈R)
(1)求證:無論m取什么實鼓,直線l與圓C恒交于兩點;
(2)求直線l被圓C截得的弦長最小時l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任意x∈[0,
π
3
],使3cos2
x
2
+√3sin
x
2
cos
x
2
<a+
3
2
恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果sinα+cosα=
3
4
,那么sinα-cosα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,當x為
 
時,y=10-2x-
32
x
有最大值,最大值是
 

查看答案和解析>>

同步練習(xí)冊答案