【題目】過拋物線y2=4x焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,且A、C位于x軸同側(cè),若|AC|=2|AF|,則|BF|等于( 。
A. 2B. 3C. 4D. 5
【答案】C
【解析】
由題意可知:|AC|=2|AF|,則∠ACD,利用三角形相似關(guān)系可知丨AF丨=丨AD丨,直線AB的切斜角,設(shè)直線l方程,代入橢圓方程,利用韋達(dá)定理及拋物線弦長公式求得丨AB丨,即可求得|BF|.
拋物線y2=4x焦點(diǎn)F(1,0),準(zhǔn)線方程l:x=﹣1,準(zhǔn)線l與x軸交于H點(diǎn),
過A和B做AD⊥l,BE⊥l,
由拋物線的定義可知:丨AF丨=丨AD丨,丨BF丨=丨BE丨,
|AC|=2|AF|,即|AC|=2|AD|,
則∠ACD,由丨HF丨=p=2,
∴,
則丨AF丨=丨AD丨,
設(shè)直線AB的方程y(x﹣1),
,整理得:3x2﹣10x+3=0,
則x1+x2,
由拋物線的性質(zhì)可知:丨AB丨=x1+x2+p,
∴丨AF丨+丨BF丨,解得:丨BF丨=4,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個口袋里裝有個白球和個紅球,從口袋中任取個球.
(1)共有多少種不同的取法?
(2)其中恰有一個紅球,共有多少種不同的取法?
(3)其中不含紅球,共有多少種不同的取法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為,過直線上一點(diǎn)引曲線的切線,切點(diǎn)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點(diǎn),求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)y=f(x),設(shè)集合A={x|y=f(x)},B={y|y=f(x)}.若對于x∈A,y∈B,使得x+y=0成立,則稱函數(shù)f(x)具有性質(zhì)P.給出下列三個函數(shù):①;②;③y=lgx.其中,具有性質(zhì)P的函數(shù)的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為打入國際市場,決定從,兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)
項(xiàng)目類別 | 年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價 | 每年最多可生產(chǎn)的件數(shù) |
產(chǎn)品 | 20 | 10 | 200 | |
產(chǎn)品 | 40 | 8 | 18 | 120 |
其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價格決定,預(yù)計(jì).另外,年銷售件產(chǎn)品時需上交萬美元的特別關(guān)稅.假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.
(1)寫出該廠分別投資生產(chǎn),兩種產(chǎn)品的年利潤、與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并指明其定義域;
(2)如何投資才可獲得最大年利潤?請你做出規(guī)劃.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若在處,和圖象的切線平行,求的值;
(2)設(shè)函數(shù),討論函數(shù)零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中,,)的圖象與軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最高點(diǎn)為.
(1)求的解析式;
(2)先把函數(shù)的圖象向左平移個單位長度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,試寫出函數(shù)的解析式.
(3)在(2)的條件下,若存在,使得不等式成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)與短軸的一個頂點(diǎn)構(gòu)成底邊為,頂角為的等腰三角形.
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上三動點(diǎn),且,線段的中點(diǎn)為,,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com