【題目】給定函數(shù)yf(x),設(shè)集合A{x|yf(x)}B{y|yf(x)}.若對(duì)于xA,yB,使得x+y0成立,則稱函數(shù)f(x)具有性質(zhì)P.給出下列三個(gè)函數(shù):①;②;③ylgx.其中,具有性質(zhì)P的函數(shù)的序號(hào)是_____

【答案】①③

【解析】

A即為函數(shù)的定義域,B即為函數(shù)的值域,求出每個(gè)函數(shù)的定義域及值域,直接判斷即可.

對(duì)①,A (,0) (0+∞),B (,0) (0,+∞),顯然對(duì)于xA,yB,使得x+y0成立,即具有性質(zhì)P

對(duì)②,AR,B (0,+∞),當(dāng)x0時(shí),不存在yB,使得x+y0成立,即不具有性質(zhì)P;

對(duì)③,A (0,+∞),BR,顯然對(duì)于xA,yB,使得x+y0成立,即具有性質(zhì)P

故答案為:①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在區(qū)間上的函數(shù)的圖象如圖所示,記為,為頂點(diǎn)的三角形的面積為,則函數(shù)的導(dǎo)數(shù)的圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱臺(tái)的上下底面分別是邊長(zhǎng)為2和4的正方形, = 4且 ⊥底面,點(diǎn)的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)在邊上找一點(diǎn),使∥面,

并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,給出滿足的條件,就能得到動(dòng)點(diǎn)的軌跡方程,下表給出了一些條件及方程:

條件

方程

周長(zhǎng)為

面積為

中,

則滿足條件①,②,的軌跡方程依次為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題的序號(hào)是__________

①“若,則”的否命題;

②“,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定;

③“”是“”的必要條件;

④函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y24x焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,且A、C位于x軸同側(cè),若|AC|2|AF|,則|BF|等于( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲盒子中有個(gè)紅球,個(gè)藍(lán)球乙盒子中有個(gè)紅球,個(gè)藍(lán)球同時(shí)從甲乙兩個(gè)盒子中取出個(gè)球進(jìn)行交換,(a)交換后,從甲盒子中取1個(gè)球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個(gè)數(shù)記為.則(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)具有性質(zhì)__________.(填入所有正確性質(zhì)的序號(hào))

①最大值為,圖象關(guān)于直線對(duì)稱;

②圖象關(guān)于軸對(duì)稱;

③最小正周期為;

④圖象關(guān)于點(diǎn)對(duì)稱;

⑤在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)時(shí)函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為

1)求出此函數(shù)的解析式;

2)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉淼?/span>得到函數(shù),再將函數(shù)的圖像向左平移個(gè)單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值;

3)是否存在實(shí)數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案