已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的方程,f(x)=-
5
2
x+b
在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(Ⅲ)證明:對(duì)任意的正整數(shù)n,不等式
2 
12
+
3
22
+…+
n+1
n2
>ln(n+1)
成立.
分析:(Ⅰ)求出f′(x),因?yàn)楹瘮?shù)在x=0處取極值,所以f'(0)=0求出a即可;
(Ⅱ)把a(bǔ)=1代入求得f(x)的解析式,把f(x)代入方程中得ln(x+1)-x2+
5
2
x-b=0
,然后令 φ(x)=ln(x+1)-x2+
3
2
x-b
,求出導(dǎo)函數(shù),討論導(dǎo)函數(shù)的增減性,得到b的取值范圍;
(Ⅲ)求出f′(x)=0時(shí)x的值,討論函數(shù)的增減性得到函數(shù)的最大值為f(0),故ln(x+1)-x2-x≤0,然后取x=
1
n
>0,代入得到結(jié)論成立.
解答:解:(Ⅰ)f′(x)=
1
x+a
-2x-1
,∵x=0時(shí),f(x)取得極值,
∴f'(0)=0,
1
0+a
-2×0-1=0
,解得a=1.經(jīng)檢驗(yàn)a=1符合題意.
(Ⅱ)由a=1知 f(x)=ln(x+1)-x2-x,由f(x)=-
5
2
x+b
,得 ln(x+1)-x2+
5
2
x-b=0

φ(x)=ln(x+1)-x2+
3
2
x-b
,
f(x)=-
5
2
x+b
在[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,
等價(jià)于φ(x)=0在[0,2]上恰有兩個(gè)不同實(shí)數(shù)根. φ′(x)=
1
x+1
-2x+
5
2
=
-(4x+5)(x-1)
2(x+1)
,
當(dāng)x∈(0,1)時(shí),φ'(x)>0,于是φ(x)在[0,1]上單調(diào)遞增;
當(dāng)x∈(1,2)時(shí),φ'(x)<0,于是φ(x)在[1,2]上單調(diào)遞減;
依題意有
φ(0)≤0
φ(1)>0
φ(2)≤0
,解可得ln3-1≤b<ln2+
1
2
.

(Ⅲ)f(x)=ln(x+1)-x2-x的定義域?yàn)閧x|x>1}.
由(Ⅰ)知 f′(x)=
-x(2x+3)
x+1
.令f′(x)=0
時(shí),x=0或x=-
3
2
(舍去),
∴當(dāng)-1<x<0時(shí),f'(x)>0,f(x)單調(diào)遞增;
當(dāng)x>0時(shí),f'(x)<0,f(x)單調(diào)遞減.
∴f(0)為f(x)在(-1,+∞)上的最大值.
∴f(x)≤f(0),
故ln(x+1)-x2-x≤0(當(dāng)且僅當(dāng)x=0時(shí),等號(hào)成立).
對(duì)任意正整數(shù)n,取 x=
1
n
>0
得,ln(
1
n
+1)<
1
n
+
1
n2
,故ln
n+1
n
n+1
n2

ln(n+1)-lnn<
n+1
n2

分別取n=1,2,3,…,n得:
ln(1+1)-ln1<
2+1
12
,
ln(2+1)-ln2<
2+1
22
,

ln(n+1)-lnn<
n+1
n2

以上n個(gè)式子相加得:
2 
12
+
3
22
+…+
n+1
n2
>ln(n+1)
點(diǎn)評(píng):考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,注意函數(shù)與方程的綜合運(yùn)用,以及會(huì)進(jìn)行不等式的證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案