如圖所示,已知在△ABC中,∠ABC=90°,AD平分∠BACBCD,證明:

答案:略
解析:

解:過(guò)BBF⊥ADE,交ACF,過(guò)EEG∥BCACG

∵∠ABC=90°,∴△ABE∽△ADB,

∵∠BAD=∠DACAE=AE,∠AEB=∠AEF=90°,∴BE=FE

∵EG∥BC∴GCF中點(diǎn),

∵EG∥BC,
,故


提示:

分析:要證結(jié)論中有,而ABRt△ABD中,且為直角邊,故想到構(gòu)造射影型圖形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示精英家教網(wǎng),已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)問(wèn)當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(II)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥OD時(shí),求二面角Q-PD-A的余弦值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知在矩形ABCD中,
AD
=4
3
,設(shè)
AB
=a,
BC
=b,
BD
=c
,試求|
a
+
b
+
c
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在[-1,7]上的函數(shù)y=f(x)的圖象如圖所示.已知(a,b)是y=
2012
f(x)
+2012
的一個(gè)單調(diào)遞增區(qū)間,則b-a的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆福建省高一下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知在圓錐SO中,底面半徑r=1,母線長(zhǎng)l=4,M為母線SA上的一個(gè)點(diǎn),且SMx,從點(diǎn)M拉一根繩子,圍繞圓錐側(cè)面轉(zhuǎn)到點(diǎn)A,求:

(1)設(shè)f(x)為繩子最短長(zhǎng)度的平方,求f(x)表達(dá)式;

(2)繩子最短時(shí),頂點(diǎn)到繩子的最短距離;

(3)f(x)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆吉林省高二4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)P、B、D的坐標(biāo);

(2)問(wèn)當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?

(3)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥QD時(shí),求二面角Q-PD-A的大。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案