在正方體ABCD-A1B1C1D1,棱長(zhǎng)AA1=2.
(1)E為棱CC1的中點(diǎn),求證:B1D1⊥AE;   
(2)求二面角C-AE-B的平面角的正切值.
分析:(1)連接A1C1,根據(jù)正方體的結(jié)構(gòu)特征得到A1C1是AE在平面A1C1上的射影,進(jìn)而根據(jù)三垂線(xiàn)定理得到B1D1⊥AE.
(2)連接BD交AC于O,過(guò)B點(diǎn)作BF⊥AE交AE于F,連接OF,可得∠BFO是二面角B-AE-C的平面角,根據(jù)相似三角形性質(zhì)求出OF后,解三角形BOF即可,得到二面角B-AE-C的平面角
解答:證明:(1)連接A1C1,
∵AA1⊥平面A1C1,
∴A1C1是AE在平面A1C1上的射影,
在正方形A1B1C1D1中,B1D1⊥A1C1
∴B1D1⊥AE
解:(2)連接BD交AC于O,過(guò)B點(diǎn)作BF⊥AE交AE于F,連接OF
∵EC⊥平面AC在正方形ABCD中,BD⊥AC,∴BD⊥平面ACE
∴OF是BF在平面EAC上的射影,∴AE⊥FO∴∠BFO是二面角B-AE-C的平面角
在正方形ABCD中,BO=AO=
1
2
AC=
2

在Rt△ACE中,AE=3,
∵△AOF∽△AEC,
OA
OF
=
AE
EC

∴OF=
OA•EC
AE
=
2
3

在Rt△BOF中,tan∠BFO=
OB
OF
=3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,點(diǎn)到平面的距離,線(xiàn)線(xiàn)垂直的判定,其中(1)的關(guān)鍵是用三垂線(xiàn)定理證明線(xiàn)線(xiàn)垂直,(2)的關(guān)鍵是確定∠BFO是二面角B-AE-C的平面角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線(xiàn)BD′的一個(gè)平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結(jié)論正確的為
①③④
.(寫(xiě)出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點(diǎn),則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點(diǎn). 
(1)若M為BB′的中點(diǎn),證明:平面EMF∥平面ABCD.
(2)求異面直線(xiàn)EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線(xiàn)BD′的一個(gè)平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案