6.已知m,n∈R,則“mn<0”是“方程$\frac{x^2}{m}-\frac{y^2}{n}=1$為雙曲線方程”的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

分析 根據(jù)充分必要條件的定義求出mn>0,根據(jù)充分必要條件的定義判斷即可.

解答 解:“方程$\frac{x^2}{m}-\frac{y^2}{n}=1$為雙曲線方程”,
則mn>0,
則mn<0是方程$\frac{x^2}{m}-\frac{y^2}{n}=1$為雙曲線方程”的既不充分也不必要條件,
故選:D.

點(diǎn)評 本題考查了充分必要條件,考查雙曲線的定義,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=$\sqrt{3}$AD,AE⊥PC于點(diǎn)E,EF∥CD,交PD于點(diǎn)F
(Ⅰ)證明:平面ADE⊥平面PBC
(Ⅱ)求二面角D-AE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-(m-2)x-2m
(1)當(dāng)m=4且x∈[2,3]時(shí),求函數(shù)f(x)的值域;
(2)若m∈[1,3]時(shí),f(x)≤0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程與圓${(x+\sqrt{3})}^{2}+{(y+1)}^{2}=1$相切,則此雙曲線的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=f'(2){x^3}+\frac{1}{x}$,則f(2)=( 。
A.$-\frac{1}{4}$B.$\frac{1}{44}$C.$\frac{15}{22}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求實(shí)數(shù)a,b的值;
(2)過點(diǎn)A(0,16)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+1)為奇函數(shù).若f(2)=1,則f(1)+f(2)+f(3)+…+f(2015)=( 。
A.1B.2014C.0D.-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線(m+2)x+my+1=0與直線(m-1)x+(m-4)y+2=0互相垂直,則m 的值為( 。
A.$\frac{1}{2}$B.-2C.-$\frac{1}{2}$或2D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.(理)如圖在四面體OABC中,OA,OB,OC兩兩垂直,且OB=OC=3,OA=4,給出如下判斷:
①存在點(diǎn)D(O點(diǎn)除外),使得四面體DABC有三個(gè)面是直角三角形;
②存在點(diǎn)D,使得點(diǎn)O在四面體DABC外接球的球面上;
③存在唯一的點(diǎn)D使得OD⊥平面ABC;
④存在點(diǎn)D,使得四面體DABC是正棱錐;
⑤存在無數(shù)個(gè)點(diǎn)D,使得AD與BC垂直且相等.
其中正確命題的序號(hào)是①②④⑤(把你認(rèn)為正確命題的序號(hào)填上).

查看答案和解析>>

同步練習(xí)冊答案