【題目】已知,函數(shù)有兩個(gè)不同的極值點(diǎn),

(1)求的取值范圍;

(2)證明:

【答案】(1);(2)見解析

【解析】

1)求函數(shù)的定義域,以及導(dǎo)數(shù),將問(wèn)題轉(zhuǎn)化為導(dǎo)數(shù)方程

,轉(zhuǎn)化為二次方程上有兩個(gè)不等的實(shí)根,再分析、對(duì)稱軸以及二次函數(shù)處函數(shù)值的正負(fù),列出有關(guān)的不等式組解出即可;

2)由、為二次方程的兩根,列出韋達(dá)定理,再將韋達(dá)定理代入代數(shù)式,經(jīng)過(guò)化簡(jiǎn)得出關(guān)于的函數(shù),并令,

轉(zhuǎn)化為關(guān)于的函數(shù),再利用導(dǎo)數(shù)結(jié)合單調(diào)性證明結(jié)論成立。

1,函數(shù) 定義域:.,

,

函數(shù)有兩個(gè)不同的極值點(diǎn),img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/28/06/0c1e6116/SYS202005280601105383817422_DA/SYS202005280601105383817422_DA.012.png" width="18" height="24" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />.對(duì)于中的應(yīng)滿足①②③三個(gè)條件:

,①,△,②,③

由①②③可得的取值范圍:,

2)證明:,

得:,,

,

,則,

將其令為即:,則有:,

,,在定義域是單調(diào)遞減的函數(shù),

4,在定義域也是單調(diào)遞減的函數(shù),4

即:得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共有編號(hào)分別為1,2,3,4,5的五個(gè)座位,在甲同學(xué)不坐2號(hào)座位,乙同學(xué)不坐5號(hào)座位的條件下,甲、乙兩位同學(xué)的座位號(hào)相加是偶數(shù)的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實(shí)數(shù)的最大值;

(2)在(1)成立的條件下,正實(shí)數(shù)滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;

(Ⅱ)證明:當(dāng)時(shí),關(guān)于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國(guó)古老的傳統(tǒng)民間藝術(shù)之一.圖中的窗花是由一張圓形紙片剪去一個(gè)正十字形剩下的部分,正十字形的頂點(diǎn)都在圓周上.已知正十字形的寬和長(zhǎng)都分別為x,y(單位:dm)且xy,若剪去的正十字形部分面積為4dm2

1)求y關(guān)于x的函數(shù)解析式,并求其定義域;

2)現(xiàn)為了節(jié)約紙張,需要所用圓形紙片面積最。(dāng)x取何值時(shí),所用到的圓形紙片面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,平面,,的中點(diǎn),是線段上的一點(diǎn),且.

(1)求證:平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某企業(yè)的某種產(chǎn)品中抽取件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:

(Ⅰ)求這件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,記作,);

(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差

(i)若使的產(chǎn)品的質(zhì)量指標(biāo)值高于企業(yè)制定的合格標(biāo)準(zhǔn),則合格標(biāo)準(zhǔn)的質(zhì)量指標(biāo)值大約為多少?

(ii)若該企業(yè)又生產(chǎn)了這種產(chǎn)品件,且每件產(chǎn)品相互獨(dú)立,則這件產(chǎn)品質(zhì)量指標(biāo)值不低于的件數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式:;若,則①;②;③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)對(duì)五年級(jí)的學(xué)生進(jìn)行體質(zhì)測(cè)試,已知五年一班共有學(xué)生30人,測(cè)試立定跳遠(yuǎn)的成績(jī)用莖葉圖表示如圖(單位:):男生成績(jī)?cè)?75以上(包括175)定義為“合格”,成績(jī)?cè)?75以下(不包括175)定義為“不合格”.女生成績(jī)?cè)?65以上(包括165)定義為“合格”,成績(jī)?cè)?65以下(不包括165)定義為“不合格”.

(1)求五年一班的女生立定跳遠(yuǎn)成績(jī)的中位數(shù);

(2)在五年一班的男生中任意選取3人,求至少有2人的成績(jī)是合格的概率;

(3)若從五年一班成績(jī)“合格”的學(xué)生中選取2人參加復(fù)試,用表示其中男生的人數(shù),寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案