設(shè)向量=(2,sinα),若,則tan(α-)等于( )
A.-
B.
C.-3
D.3
【答案】分析:利用?,即可得出tanα,再利用兩角差的正切公式即可得出.
解答:解:∵,∴2cosα-sinα=0,即tanα=2.
=,
故選B.
點(diǎn)評(píng):熟練掌握?、兩角差的正切公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(2,sinθ),
b
=(1,cosθ)
,θ為銳角.
(1)若
a
b
,求tanθ的值;
(2)若
a
b
=
13
6
,求sinθ+cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)設(shè)向量
a
=(2,sinθ),
b
=(1,cosθ),θ為銳角.
(1)若
a
b
=
13
6
,求sinθ+cosθ的值;
(2)若
a
b
,求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南京二模 題型:解答題

設(shè)向量
a
=(2,sinθ),
b
=(1,cosθ),θ為銳角.
(1)若
a
b
=
13
6
,求sinθ+cosθ的值;
(2)若
a
b
,求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)向量
a
=(2,sinθ),
b
=(1,cosθ)
,θ為銳角.
(1)若
a
b
,求tanθ的值;
(2)若
a
b
=
13
6
,求sinθ+cosθ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案