(2013•湖南)在銳角△ABC中,角A,B所對的邊長分別為a,b.若2asinB=
3
b,則角A等于( 。
分析:利用正弦定理可求得sinA,結(jié)合題意可求得角A.
解答:解:∵在△ABC中,2asinB=
3
b,
∴由正弦定理
a
sinA
=
b
sinB
=2R得:2sinAsinB=
3
sinB,
∴sinA=
3
2
,又△ABC為銳角三角形,
∴A=
π
3

故選D.
點評:本題考查正弦定理,將“邊”化所對“角”的正弦是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)在平面直角坐標(biāo)系xOy中,若直線l:
x=t
y=t-a
,(t為參數(shù))過橢圓C:
x=3cosθ
y=2sinθ
(θ為參數(shù))的右頂點,則常數(shù)a的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,點P是邊AB邊上異于AB的一點,光線從點P出發(fā),經(jīng)BC,CA反射后又回到點P(如圖1),若光線QR經(jīng)過△ABC的重心,則AP等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)在平面直角坐標(biāo)系xOy中,將從點M出發(fā)沿縱、橫方向到達(dá)點N的任一路徑稱為M到N的一條“L路徑”.如圖所示的路徑MM1M2M3N與路徑MN1N都是M到N的“L路徑”.某地有三個新建居民區(qū),分別位于平面xOy內(nèi)三點A(3,20),B(-10,0),C(14,0)處.現(xiàn)計劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點P處修建一個文化中心.
(I)寫出點P到居民區(qū)A的“L路徑”長度最小值的表達(dá)式(不要求證明);
(II)若以原點O為圓心,半徑為1的圓的內(nèi)部是保護(hù)區(qū),“L路徑”不能進(jìn)入保護(hù)區(qū),請確定點P的位置,使其到三個居民區(qū)的“L路徑”長度之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)在平面直角坐標(biāo)系xOy中,若直線l1
x=2s+1
y=s
(s為參數(shù))和直線l2
x=at
y=2t-1
(t為參數(shù))平行,則常數(shù)a的值為
4
4

查看答案和解析>>

同步練習(xí)冊答案