如圖,兩矩形ABCD,ABEF所在平面互相垂直,DE與平面ABCD及平面ABEF所成角分別為,M、N分別為DE與DB的中點,且MN=1.
(1) 求證:MN丄平面ABCD
(2) 求線段AB的長;
(3) 求二面角A—DE—B的平面角的正弦值.
(Ⅰ)證明:∵平面ABCD⊥平面ABEF,且平面ABCD平面ABEF=AB
EB⊥AB ∴EB⊥平面ABCD 又MN∥EB
∴MN⊥面ABCD. (3分)
(Ⅱ)由(Ⅰ)可知∠EDB為DE與平面ABCD所成的角 ∴∠EDB=30o
又在Rt△EBD中,EB=2MN=2,∠EBD=90o ∴DE=
連結(jié)AE,可知∠DEA為DE與平面ABEF所成的角 ∴∠DEA=45o (5分)
在Rt△DAE中,∠DAE=90o ∴AE=DE cos∠DEA=2
在Rt△ABE中,. (7分)
(Ⅲ)方法一:過B作BO⊥AE于O點,過O作OH⊥DE于H,連BH
∵AD⊥平面ABEF BO面ABEF
∴BO⊥平面ADE ∴OH為BH在平面ADE內(nèi)的射影
∴BH⊥DE 即∠BHO為所求二面角的平面角 (9分)
在Rt△ABE中,BO=
在Rt△DBE中,由BH·DE=DB·OE得BH=
∴sin∠BHO=
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川宜賓市高三第一次診斷性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,兩矩形ABCD、ABEF所在平面互相垂直,DE與平面ABCD及平面所成角分別為30°、45°,M、N分別為DE與DB的中點,且MN=1.
(I) 求證:MN⊥平面ABCD
(II) 求線段AB的長;
(III)求二面角A-DE-B的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省焦作市高三第一次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,兩矩形ABCD、ABEF所在平面互相垂直,DE與平面ABCD及平面所成角分別為300、450, M、N分別為DE與DB的中點,且MN=1.
(Ⅰ)求證:MN⊥平面ABCD;
(Ⅱ)求線段AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com