【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒開一壺水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時(shí)間內(nèi)煤氣輸出量成正比,那么為多少時(shí)燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,為的導(dǎo)函數(shù).
(1)討論的單調(diào)性;
(2)若,當(dāng)時(shí),求證:有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a=2,_______,求△ABC的周長l的范圍.
在①(﹣cos,sin),(cos,sin),且,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x),f(A)
注:這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問題中并對其進(jìn)行求解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線過原點(diǎn)且傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線與曲線關(guān)于直線對稱.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若直線過原點(diǎn)且傾斜角為,設(shè)直線與曲線相交于,兩點(diǎn),直線與曲線相交于,兩點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒開一壺水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時(shí)間內(nèi)煤氣輸出量成正比,那么為多少時(shí)燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,圓:,動圓與圓和圓均內(nèi)切.
(1)求動圓圓心的軌跡的方程;
(2)過點(diǎn)的直線與軌跡交于,兩點(diǎn),過點(diǎn)且垂直于的直線交軌跡于兩點(diǎn),兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上頂點(diǎn)為A,右焦點(diǎn)為F,O是坐標(biāo)原點(diǎn),是等腰直角三角形,且周長為.
(1)求橢圓的方程;
(2)若直線l與AF垂直,且交橢圓于B,C兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情后,為了支持企業(yè)復(fù)工復(fù)產(chǎn),某地政府決定向當(dāng)?shù)仄髽I(yè)發(fā)放補(bǔ)助款,其中對納稅額在萬元至萬元(包括萬元和萬元)的小微企業(yè)做統(tǒng)一方案.方案要求同時(shí)具備下列兩個(gè)條件:①補(bǔ)助款(萬元)隨企業(yè)原納稅額(萬元)的增加而增加;②補(bǔ)助款不低于原納稅額(萬元)的.經(jīng)測算政府決定采用函數(shù)模型(其中為參數(shù))作為補(bǔ)助款發(fā)放方案.
(1)判斷使用參數(shù)是否滿足條件,并說明理由;
(2)求同時(shí)滿足條件①、②的參數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com