(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分

已知拋物線方程為.

(1)若點(diǎn)在拋物線上,求拋物線的焦點(diǎn)的坐標(biāo)和準(zhǔn)線的方程;

(2)在(1)的條件下,若過焦點(diǎn)且傾斜角為的直線交拋物線于、兩點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,直線、、的斜率分別記為、、,求證:、、成等差數(shù)列;

(3)對(duì)(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請(qǐng)寫出推廣命題,并給予證明.

說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評(píng)分.

(本題18分,其中第(1)小題4分,第(2)小題6分,第(3)小題8分)

已知拋物線方程為

(1)若點(diǎn)在拋物線上,求拋物線的焦點(diǎn)的坐標(biāo)和準(zhǔn)線的方程;

(2)在(1)的條件下,若過焦點(diǎn)且傾斜角為的直線交拋物線于、兩點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,直線、、的斜率分別記為、、,求證:、、成等差數(shù)列;

(3)對(duì)(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請(qǐng)寫出推廣命題,并結(jié)予證明.

說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評(píng)分.

解:

(1)   ∵在拋物線上,  由   得……………2分

∴拋物線的焦點(diǎn)坐標(biāo)為,          ……………3分

準(zhǔn)線的方程為                ……………4分

(2)證明:∵拋物線的方程為,過焦點(diǎn)且傾斜角為的直線的方程為

由可得 

解得點(diǎn)A、B的坐標(biāo)為,……………6分

∵拋物線的準(zhǔn)線方程為,設(shè)點(diǎn)M的坐標(biāo)為,……………7分

則,,,……………8分

由……………9分

知、、成等差數(shù)列。               ……………10分

(3)本小題可根考生不同的答題情況給予評(píng)分

①推廣命題:若拋物線的方程為,過焦點(diǎn)F的直線交拋物線于A、B 兩點(diǎn),M為拋物線準(zhǔn)線上的一點(diǎn),直線、、的斜率分別記為、、,則、、成等差數(shù)列。                                       ……………12分

證明:

拋物線的焦點(diǎn)坐標(biāo)為,當(dāng)直線平行于軸時(shí),

由(2)知命題成立。                                         ……………13分

設(shè)M點(diǎn)坐標(biāo)為

當(dāng)直線不平行于軸時(shí),設(shè)的方程為,其與拋物線的交點(diǎn)坐標(biāo)為、,則有,

由  得 ,即        ……………14分

,

,∴,即  、、成等差數(shù)列………16分

②推廣命題:若拋物線的方程為,過焦點(diǎn)F的直線交拋物線于A、B 兩點(diǎn),M為拋物線準(zhǔn)線上的一點(diǎn),直線、、的斜率分別記為、、,則、、成等差數(shù)列。                          ……………13分

證明:拋物線的焦點(diǎn)F的坐標(biāo)為,準(zhǔn)線方程為,設(shè)M點(diǎn)坐標(biāo)為

設(shè)與拋物線的交點(diǎn)坐標(biāo)為、,則有,

(。┊(dāng)直線平行于軸時(shí),直線的方程為

此時(shí)有 ……………14分

(ⅱ)當(dāng)直線不平行于軸時(shí),直線的方程可設(shè)為

由     得     ……………15分

,∴,即  、、成等差數(shù)列…18分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

(1)若,,求方程在區(qū)間內(nèi)的解集;

(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img width=21 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/18/333018.gif" >,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).
(1)若,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/89/5/a05qa.gif" style="vertical-align:middle;" />,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

(文)已知數(shù)列中,

(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

(3)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè)函數(shù)是定義域?yàn)?i>R的奇函數(shù).

(1)求k值;

(2)(文)當(dāng)時(shí),試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052111495710937700/SYS201205211152429218217731_ST.files/image019.png">,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案