【題目】(1)求與橢圓有共同焦點(diǎn)且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程;

(2)已知拋物線的焦點(diǎn)在軸上,拋物線上的點(diǎn)到焦點(diǎn)的距離等于5,求拋物線的標(biāo)準(zhǔn)方程和的值.

【答案】1;(2,

【解析】

試題(1)由題意得可得橢圓的焦點(diǎn)坐標(biāo)為,設(shè)出雙曲線的方程:,得,又雙曲線過點(diǎn),可得,從而求解的值,得到雙曲線的方程;(2)設(shè)拋物線的方程為,根據(jù)拋物線的定義點(diǎn)到焦點(diǎn)的距離等于等于點(diǎn)到準(zhǔn)線的距離為,即,求解的值,得到拋物線的方程,從而求解實(shí)數(shù)的值.

試題解析:(1)橢圓的焦點(diǎn)為,

設(shè)雙曲線的標(biāo)準(zhǔn)方程為,),則

雙曲線過點(diǎn),

綜上,得,

所求雙曲線的標(biāo)準(zhǔn)方程為

2)設(shè)拋物線方程為),則焦點(diǎn),準(zhǔn)線方程為,

根據(jù)拋物線的定義,點(diǎn)到焦點(diǎn)的距離等于,也就是到準(zhǔn)線的距離為,則, ,

因此,拋物線方程為,

又點(diǎn)在拋物線上,于是,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是( )

A. ,使得成立.

B. 命題:任意,都有,則:存在,使得

C. 命題“若,則”的逆命題為真命題.

D. 若數(shù)列是等比數(shù)列,的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級(jí)模仿《中國(guó)詩詞大會(huì)》節(jié)目舉辦學(xué)校詩詞大會(huì),進(jìn)入正賽的條件為:電腦隨機(jī)抽取10首古詩,參賽者能夠正確背誦6首及以上的進(jìn)入正賽,若學(xué)生甲參賽,他背誦每一首古詩的正確的概率均為

(1)求甲進(jìn)入正賽的概率;

(2)若進(jìn)入正賽,則采用積分淘汰制,規(guī)則是:電腦隨機(jī)抽取4首古詩,每首古詩背誦正確加2分,錯(cuò)誤減1.由于難度增加,甲背誦每首古詩正確的概率為,求甲在正賽中積分的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十七世紀(jì)法國(guó)數(shù)學(xué)家費(fèi)馬提出猜想:“當(dāng)整數(shù)時(shí),關(guān)于的方程沒有正整數(shù)解”.經(jīng)歷三百多年,于二十世紀(jì)九十年中期由英國(guó)數(shù)學(xué)家安德魯懷爾斯證明了費(fèi)馬猜想,使它終成費(fèi)馬大定理,則下面說法正確的是( )

A. 存在至少一組正整數(shù)組使方程有解

B. 關(guān)于的方程有正有理數(shù)解

C. 關(guān)于的方程沒有正有理數(shù)解

D. 當(dāng)整數(shù)時(shí),關(guān)于的方程沒有正實(shí)數(shù)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)院用光電比色計(jì)檢查尿汞時(shí),得尿汞含量(毫克/)與消光系數(shù)如下表:

尿汞含量

2

4

6

8

10

消光系數(shù)

64

138

205

285

360

1)作散點(diǎn)圖;

2)如果之間具有線性相關(guān)關(guān)系,求回歸線直線方程;

3)估計(jì)尿汞含量為9毫克/升時(shí)消光系數(shù).

,

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面,且,,分別是、的中點(diǎn).

(1)求證:平面平面;

(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市收集并整理了該市20191月份至10月份各月最低氣溫與最高氣溫(單位:)的數(shù)據(jù),繪制了下面的折線圖.

已知該城市各月的最低氣溫與最高氣溫具有較好的線性關(guān)系,則根據(jù)折線圖,下列結(jié)論正確的是

A.最低氣溫與最高氣溫為正相關(guān)B.10月的最高氣溫不低于5月的最高氣溫

C.月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在1D.最低氣溫低于0 的月份有4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于給定數(shù)列,若數(shù)列滿足:對(duì)任意,都有,則稱數(shù)列是數(shù)列的“相伴數(shù)列”.

(1)若,且數(shù)列是數(shù)列的“相伴數(shù)列”,試寫出的一個(gè)通項(xiàng)公式,并說明理由;

(2)設(shè),證明:不存在等差數(shù)列,使得數(shù)列是數(shù)列的“相伴數(shù)列”;

(3)設(shè),(其中),若是數(shù)列的“相伴數(shù)列”,試分析實(shí)數(shù)b、q的取值應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)足球甲聯(lián)賽共有12個(gè)足球俱樂部參加,實(shí)行主客場(chǎng)雙循環(huán)賽制,即任何兩隊(duì)分別在主場(chǎng)和客場(chǎng)各比賽一場(chǎng),勝一場(chǎng)得3,平一場(chǎng)各得1,負(fù)一場(chǎng)得0,在聯(lián)賽結(jié)束后按積分的高低排出名次.則在積分榜上位次相鄰的兩支球隊(duì)積分差距最多可達(dá)_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案