如圖所示,A、B、C、D是海上的四個小島,要建三座橋,將這四個島連接起來,不同的建橋方案共有
16
16
種.
分析:由建橋的方式可以分為兩類:從一個島出發(fā)向其他三島各建一橋,一個島最多建兩座橋,利用排列的計算公式即可得出.
解答:解:分為以下兩類:
第一類,從一個島出發(fā)向其他三島各建一橋,共有4種方法;
第二類,一個島最多建兩座橋,但是象下面這樣的兩個排列對應(yīng)一種建橋方法,A-B-C-D,D-C-B-A,要去掉重復(fù)的這樣,因此共有有
1
2
×4!
=12種方法.
根據(jù)分類計數(shù)原理,知道共有4+12=16種.
故答案為16.
點評:熟練掌握分類加法原理和分步乘法原理及排列的計算公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=logax,g(x)=logbx,r(x)=logcx,h(x)=logdx的圖象如圖所示則a,b,c,d的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)如圖所示,A,B,C是圓O上的三點,CO的延長線與線段BA的延長線交于圓O外的點D,若
OC
=m
OA
+n
OB
,則m+n的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,A,B,C是圓O上的三點,CO的延長線與線段BA的延長線交于圓O外的點D,若
OC
=m
OA
+n
OB
,則m+n的取值范圍是
(-1,0)
(-1,0)

查看答案和解析>>

同步練習(xí)冊答案