(本小題滿分13分)

已知橢圓,與直線相交于兩點,且為坐標原點.
(Ⅰ)求的值;
(Ⅱ)若橢圓長軸長的取值范圍是,求橢圓離心率的取值范圍.
(1);(2)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題



(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓交于兩點,,
的重心分別為.若原點在以線段
為直徑的圓內,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C,經(jīng)過橢圓的右焦點F且斜率為的直線l交橢圓C于A、B兩點,M為線段AB的中點,設O為橢圓的中心,射線OM交橢圓于N點.
(I)是否存在,使對任意,總有成立?若存在,求出所有的值;
(II)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
F是橢圓C的左焦點,直線l為其左準線,直線lx軸交于點P,線段MN為橢圓的長軸,已知
(1)   求橢圓C的標準方程;
(2)   若過點P的直線與橢圓相交于不同兩點A、B求證:∠AFM =∠BFN;
(3)   求三角形ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知橢圓的離心率為,右焦點也是拋物線的焦點。     
(1)求橢圓方程;
(2)若直線相交于、兩點。
①若,求直線的方程;
②若動點滿足,問動點的軌跡能否與橢圓存在公共點?若存在,求出點的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、若橢圓的弦被點(4,2)平分,則此弦所在直線方程為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知AB是橢圓的長軸,若把該長軸2010等分,過每個等分點作AB的垂線,依次交橢圓的上半部分于點,設左焦點為,則=       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知m(x+y+2y+1)=(x-2y+3)表示的曲線為一個橢圓,則m的取值范圍是       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知分別是橢圓的左、右焦點,上頂點為M。若在橢圓上存在一點P,分別連結PF1,PF2交y軸于A,B兩點,且滿足,則實數(shù)的取值范圍為             

查看答案和解析>>

同步練習冊答案