【題目】如圖,在正三棱柱中,,EF分別為AB,的中點.

1)求證:平面ACF;

2)求三棱錐的體積.

【答案】1)證明見解析;(2.

【解析】

(1)取AC的中點M,連結EMFM,然后利用三角形中位線定理,再結合正棱柱的性質(zhì),可得四邊形為平行四邊形,從而可得,再由線面平行定理可證得結果.

2)設OBC的中點,則可證得平面,所以,然后代入值計算即可.

1)證明:取AC的中點M,連結EM,FM,

中,因為E、M分別為AB,AC的中點,

所以

F的點,

所以,

故四邊形為平行四邊形,所以.

平面ACF內(nèi),在平面ACF外,

所以平面ACF.

2)設OBC的中點,因棱柱底面是正三角形,

所以有,且

因為正三棱柱

所以平面ABC,在平面ABC內(nèi),所以,

因為,在平面內(nèi),

所以平面.

于是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有三個極值點,

(1)求實數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為

1)求圓的極坐標方程與直線的直角坐標方程;

2)設直線與圓相交于,兩點,求圓,處兩條切線的交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】哈爾濱市第三中學校響應教育部門疫情期間停課不停學的號召,實施網(wǎng)絡授課,為檢驗學生上網(wǎng)課的效果,高三學年進行了一次網(wǎng)絡模擬考試.全學年共1500人,現(xiàn)從中抽取了100人的數(shù)學成績,繪制成頻率分布直方圖(如下圖所示).已知這100人中分數(shù)段的人數(shù)比分數(shù)段的人數(shù)多6.

1)根據(jù)頻率分布直方圖,求a,b的值,并估計抽取的100名同學數(shù)學成績的中位數(shù);

2)現(xiàn)用分層抽樣的方法從分數(shù)在的兩組同學中隨機抽取6名同學,從這6名同學中再任選2名同學作為網(wǎng)絡課堂學習優(yōu)秀代表發(fā)言,求這2名同學的分數(shù)不在同一組內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點與直線相切,圓心的軌跡為曲線,過點做直線與曲線交于不同兩點,三角形的垂心為點.

1)求曲線的方程;

2)求證:點在一條定直線上,并求出這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

大學生是國家的未來,代表著國家可持續(xù)發(fā)展的實力,能夠促進國家綜合實力的提高.據(jù)統(tǒng)計,2016年至2020年我國高校畢業(yè)生人數(shù)y(單位:萬人)的數(shù)據(jù)如下表:

年份

2016

2017

2018

2019

2020

年份代號x

16

17

18

19

20

高校畢業(yè)生人數(shù)y(單位:萬人)

765

795

820

834

874

1)根據(jù)上表數(shù)據(jù),計算yx的相關系數(shù)r,并說明yx的線性相關性的強弱.

(已知:,則認為yx線性相關性很強;,則認為yx線性相關性一般;,則認為yx線性相關性較弱)

2)求y關于x的線性回歸方程,并預測2022年我國高校畢業(yè)生的人數(shù)(結果取整數(shù)).

參考公式和數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,點P的坐標是,曲線C的方程為.以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,斜率為的直線l經(jīng)過點P.

1)寫出直線l的參數(shù)方程和曲線C的直角坐標方程;

2)若直線l和曲線C相交于兩點AB,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓經(jīng)過點,且動圓軸截得的弦長為4,記圓心的軌跡為曲線.

1)求曲線的標準方程;

2)過軸下方一點向曲線作切線,切點記作、,直線交曲線于點,若直線、的斜率乘積為,點在以為直徑的圓上,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年新型冠狀病毒肺炎蔓延全國,作為主要戰(zhàn)場的武漢,僅用了十余天就建成了小湯山模式的火神山醫(yī)院和雷神山醫(yī)院,再次體現(xiàn)了中國速度.隨著疫情發(fā)展,某地也需要參照小湯山模式建設臨時醫(yī)院,其占地是出一個正方形和四個以正方形的邊為底邊、腰長為400m的等腰三角形組成的圖形(如圖所示),為使占地面積最大,則等腰三角形的底角為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案