【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

【答案】
(1)解:利用cos2φ+sin2φ=1,把圓C的參數(shù)方程 (φ為參數(shù))化為(x﹣1)2+y2=1,

∴ρ2﹣2ρcosθ=0,即ρ=2cosθ


(2)解:設(shè)(ρ1,θ1)為點(diǎn)P的極坐標(biāo),由 ,解得

設(shè)(ρ2,θ2)為點(diǎn)Q的極坐標(biāo),由 ,解得

∵θ12,∴|PQ|=|ρ1﹣ρ2|=2.

∴|PQ|=2


【解析】解:(I)利用cos2φ+sin2φ=1,即可把圓C的參數(shù)方程化為直角坐標(biāo)方程.(II)設(shè)(ρ1 , θ1)為點(diǎn)P的極坐標(biāo),由 ,聯(lián)立即可解得.設(shè)(ρ2 , θ2)為點(diǎn)Q的極坐標(biāo),同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項(xiàng)a8;
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項(xiàng)和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(1)求證:f(x)≥5;
(2)若對(duì)任意實(shí)數(shù)x,15﹣2f(x)<a2+ 都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )﹣cos2x. (Ⅰ)求f( )的值;
(Ⅱ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w為常數(shù)且 <w<1),函數(shù)f(x)的圖象關(guān)于直線x=π對(duì)稱. (I)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a=1,f( A)= .求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC中,底邊BC=2 ,| ﹣t |的最小值為 | |,則△ABC的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ 有兩個(gè)零點(diǎn)x1、x2
(1)求k的取值范圍;
(2)求證:x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷“與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的兩條漸近線分別為l1 , l2 , 經(jīng)過右焦點(diǎn)F垂直于l1的直線分別交l1 , l2 于 A,B 兩點(diǎn).若| |,| |,| |成等差數(shù)列,且 反向,則該雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案