對于拋物線上任意一點,點都滿足,則的取值范圍是____  

 

【答案】

【解析】

試題分析:解:設(shè)Q( ,t),由|PQ|≥|a|得 (-a)2+t2≥a2,t2(t2+16-8a)≥0, t2+16-8a≥0,故t2≥8a-16恒成立,則8a-16≤0,a≤2,故a的取值范圍是 (-∞,2],故答案為:(-∞,2].

考點:拋物線的標(biāo)準(zhǔn)方程

點評:本題考查拋物線的標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,函數(shù)的恒成立問題,得到t2≥8a-16恒成立,是解題的關(guān)鍵

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線、橢圓和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點Q,點P(a,0)都滿足|PQ|≥|a|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于拋物線上任意一點,點都滿足,則的取值范圍是____。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市三峽聯(lián)盟高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線和橢圓都經(jīng)過點,它們在軸上有共同焦點,橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.

(1)求這兩條曲線的方程;

(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)

已知拋物線、橢圓和雙曲線都經(jīng)過點,它們在軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.

(1)求這三條曲線的方程;

(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案