如圖,△ABC中,AC=BC=AB,ABED是邊長(zhǎng)為1的正方形,EB⊥底面ABC,若G,F分別是EC,BD的中點(diǎn).
(1)求證:GF∥底面ABC;
(2)求證:AC⊥平面EBC;
(1)先證明GF//AC,再根據(jù)線(xiàn)面平行的判定定理即可證明
(2)先證BE⊥AC,再證AC⊥BC,根據(jù)線(xiàn)面垂直的判定定理即可證明
解析試題分析:(1)連接AE,如下圖所示.
∵ADEB為正方形,∴AE∩BD=F,且F是AE的中點(diǎn),
又G是EC的中點(diǎn),∴GF∥AC,
又AC?平面ABC,GF平面ABC,
∴GF∥平面ABC.
(2)∵ADEB為正方形,∴EB⊥AB,
又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB?平面ABED,
∴BE⊥平面ABC,∴BE⊥AC.
又∵AC=BC=AB,∴CA2+CB2=AB2,∴AC⊥BC.
又∵BC∩BE=B,∴AC⊥平面BCE.
考點(diǎn):本小題主要考查空間中線(xiàn)面平行與線(xiàn)面垂直的證明,考查學(xué)生的空間想象能力.
點(diǎn)評(píng):要證明線(xiàn)面平行與線(xiàn)面垂直,就要緊扣相應(yīng)的判定定理和性質(zhì)定理,定理中要求的條件缺一不可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是半圓的直徑,是半圓上除、外的一個(gè)動(dòng)點(diǎn),垂直于半圓所在的平面, ∥,,,.
⑴證明:平面平面;
⑵當(dāng)三棱錐體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,三棱柱中,
,為的中點(diǎn),且.
(1)求證:∥平面;
(2)求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在棱長(zhǎng)為2的正方體中,設(shè)是棱的中點(diǎn).
⑴ 求證:;
⑵ 求證:平面;
⑶ 求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在棱長(zhǎng)為的正方體中,分別為的中點(diǎn).
(1)求直線(xiàn)與平面所 成 角的大;
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知AC ⊥平面CDE, BD ∥AC , 為等邊三角形,F(xiàn)為ED邊上的中點(diǎn),且,
(Ⅰ)求證:CF∥面ABE;
(Ⅱ)求證:面ABE ⊥平面BDE;
(Ⅲ)求該幾何體ABECD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求證:(1)PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐P -ABC中,點(diǎn)P在平面ABC上的射影D是AC的中點(diǎn).BC ="2AC=8,AB" =
(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com