甲乙兩個(gè)同學(xué)進(jìn)行定點(diǎn)投籃游戲,已知他們每一次投籃投中的概率均為,且各次投籃的結(jié)果互不影響.甲同學(xué)決定投5次,乙同學(xué)決定投中1次就停止,否則就繼續(xù)投下去,但投籃次數(shù)不超過5次.

(1)求甲同學(xué)至少有4次投中的概率;

(2)求乙同學(xué)投籃次數(shù)的分布列和數(shù)學(xué)期望.

 

(1);(2)的分布表為

1

2

3

4

5

的數(shù)學(xué)期望

【解析】

試題分析:(1)這屬于獨(dú)立重復(fù)試驗(yàn),至少投中4次,分恰好投中4次和恰好投中5次兩種情況,即;(2)投籃次數(shù)分別等于,例如時(shí)前3次未投中第4次投中,概率為,依次計(jì)算,可得到分布列,再根據(jù)公式計(jì)算出數(shù)學(xué)期望.

試題解析:(1)設(shè)甲同學(xué)在5次投籃中,有次投中,“至少有4次投中”的概率為,則

2分

==. 4分

(2)由題意

,,,,

的分布表為

1

2

3

4

5

8分

的數(shù)學(xué)期望. 10分

考點(diǎn):(1)獨(dú)立重復(fù)試驗(yàn);(2)概率分布表,數(shù)學(xué)期望.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省高三聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

記集合和集合表示的平面區(qū)域分別為若在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)M落在區(qū)域的概率為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)在一個(gè)周期內(nèi)的圖像如圖所示,其中P,Q分別是這段圖像的最高點(diǎn)和最低點(diǎn),M,N是圖像與x軸的交點(diǎn),且,則A的值為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三百校聯(lián)合調(diào)研測試(一)數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,是半徑為1的圓的直徑,△ABC是邊長為1的正三角形,則的最大值為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三百校聯(lián)合調(diào)研測試(一)數(shù)學(xué)試卷(解析版) 題型:填空題

某算法的偽代碼如圖所示,若輸出y的值為1,則輸入的值為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),其中m,a均為實(shí)數(shù).

(1)求的極值;

(2)設(shè),若對(duì)任意的,恒成立,求的最小值;

(3)設(shè),若對(duì)任意給定的,在區(qū)間上總存在,使得成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù),若函數(shù)恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在三棱柱中,側(cè)面為菱形,且,的中點(diǎn).

(1)求證:平面平面;

(2)求證:∥平面

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)

(1)求的最小正周期和值域;

(2)在銳角△中,角的對(duì)邊分別為,若,,求

 

查看答案和解析>>

同步練習(xí)冊(cè)答案