【題目】(本小題滿分12分)已知橢圓:的焦距為,離心率為,其右焦點(diǎn)為,過(guò)點(diǎn)作直線交橢圓于另一點(diǎn).
(1)若,求外接圓的方程;
(2)若過(guò)點(diǎn)的直線與橢圓 相交于兩點(diǎn)、,設(shè)為上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.
【答案】(I)或;
(II),或.
【解析】
試題分析:(1)設(shè)橢圓的方程,用待定系數(shù)法求出的值;(2)解決直線和橢圓的綜合問(wèn)題時(shí)注意:第一步:根據(jù)題意設(shè)直線方程,有的題設(shè)條件已知點(diǎn),而斜率未知;有的題設(shè)條件已知斜率,點(diǎn)不定,可由點(diǎn)斜式設(shè)直線方程.第二步:聯(lián)立方程:把所設(shè)直線方程與橢圓的方程聯(lián)立,消去一個(gè)元,得到一個(gè)一元二次方程.第三步:求解判別式:計(jì)算一元二次方程根.第四步:寫出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問(wèn)題中結(jié)論.
試題解析:解:(1)由題意知:,,又,
解得: 橢圓的方程為:2分
可得:,,設(shè),則,,
,,即
由 ,或
即,或4分
①當(dāng)的坐標(biāo)為時(shí),, 外接圓是以為圓心,為半徑的圓,即5分
②當(dāng)的坐標(biāo)為時(shí),,,所以為直角三角形,其外接圓是以線段為直徑的圓,圓心坐標(biāo)為,半徑為,
外接圓的方程為
綜上可知:外接圓方程是,或7分
(2)由題意可知直線的斜率存在.
設(shè),,,Z|X|X|K]
由得:
由得:() 9分
,即
,結(jié)合()得: 11分
,
從而,
點(diǎn)在橢圓上,,整理得:
即,,或13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分別截取AE=AH=CF=CG=x(x>0),設(shè)四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數(shù)關(guān)系;
(2)求當(dāng)x為何值時(shí)y取得最大值,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線:(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體中,四邊形為菱形,,,面∥面,、、都垂直于面,且,為的中點(diǎn),為的中點(diǎn).
(1)求證:為等腰直角三角形;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn)和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市隨機(jī)選取位顧客,記錄了他們購(gòu)買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買,“×”表示未購(gòu)買.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計(jì)顧客同時(shí)購(gòu)買乙和丙的概率;
(Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購(gòu)買中商品的概率;
(Ⅲ)如果顧客購(gòu)買了甲,則該顧客同時(shí)購(gòu)買乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的底面是等邊三角形,點(diǎn)在平面上的射影在內(nèi)(不包括邊界),.記,與底面所成角為,;二面角,的平面角為,,則,,,之間的大小關(guān)系等確定的是()
A. B.
C. 是最小角,是最大角D. 只能確定,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com